Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfpw Structured version   Unicode version

Theorem nfpw 3812
 Description: Bound-variable hypothesis builder for power class. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypothesis
Ref Expression
nfpw.1
Assertion
Ref Expression
nfpw

Proof of Theorem nfpw
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-pw 3803 . 2
2 nfcv 2574 . . . 4
3 nfpw.1 . . . 4
42, 3nfss 3343 . . 3
54nfab 2578 . 2
61, 5nfcxfr 2571 1
 Colors of variables: wff set class Syntax hints:  cab 2424  wnfc 2561   wss 3322  cpw 3801 This theorem is referenced by:  stoweidlem57  27784 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-in 3329  df-ss 3336  df-pw 3803
 Copyright terms: Public domain W3C validator