MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfpw Unicode version

Theorem nfpw 3636
Description: Bound-variable hypothesis builder for power class. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypothesis
Ref Expression
nfpw.1  |-  F/_ x A
Assertion
Ref Expression
nfpw  |-  F/_ x ~P A

Proof of Theorem nfpw
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-pw 3627 . 2  |-  ~P A  =  { y  |  y 
C_  A }
2 nfcv 2419 . . . 4  |-  F/_ x
y
3 nfpw.1 . . . 4  |-  F/_ x A
42, 3nfss 3173 . . 3  |-  F/ x  y  C_  A
54nfab 2423 . 2  |-  F/_ x { y  |  y 
C_  A }
61, 5nfcxfr 2416 1  |-  F/_ x ~P A
Colors of variables: wff set class
Syntax hints:   {cab 2269   F/_wnfc 2406    C_ wss 3152   ~Pcpw 3625
This theorem is referenced by:  stoweidlem57  27806
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-in 3159  df-ss 3166  df-pw 3627
  Copyright terms: Public domain W3C validator