MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfra2 Unicode version

Theorem nfra2 2597
Description: Similar to Lemma 24 of [Monk2] p. 114, except the quantification of the antecedent is restricted. Derived automatically from hbra2VD 28636. Contributed by Alan Sare 31-Dec-2011. (Contributed by NM, 31-Dec-2011.)
Assertion
Ref Expression
nfra2  |-  F/ y A. x  e.  A  A. y  e.  B  ph
Distinct variable group:    y, A
Allowed substitution hints:    ph( x, y)    A( x)    B( x, y)

Proof of Theorem nfra2
StepHypRef Expression
1 nfcv 2419 . 2  |-  F/_ y A
2 nfra1 2593 . 2  |-  F/ y A. y  e.  B  ph
31, 2nfral 2596 1  |-  F/ y A. x  e.  A  A. y  e.  B  ph
Colors of variables: wff set class
Syntax hints:   F/wnf 1531   A.wral 2543
This theorem is referenced by:  ralcom2  2704  invdisj  4012  reusv3  4542  mreexexd  13550  imonclem  25813  ismonc  25814  cmpmon  25815  iepiclem  25823  isepic  25824  stoweidlem60  27809  tratrb  28299
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548
  Copyright terms: Public domain W3C validator