Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrald Unicode version

Theorem nfrald 2607
 Description: Deduction version of nfral 2609. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfrald.2
nfrald.3
nfrald.4
Assertion
Ref Expression
nfrald

Proof of Theorem nfrald
StepHypRef Expression
1 df-ral 2561 . 2
2 nfrald.2 . . 3
3 nfcvf 2454 . . . . . 6
43adantl 452 . . . . 5
5 nfrald.3 . . . . . 6
65adantr 451 . . . . 5
74, 6nfeld 2447 . . . 4
8 nfrald.4 . . . . 5
98adantr 451 . . . 4
107, 9nfimd 1773 . . 3
112, 10nfald2 1925 . 2
121, 11nfxfrd 1561 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 358  wal 1530  wnf 1534   wceq 1632   wcel 1696  wnfc 2419  wral 2556 This theorem is referenced by:  nfrexd  2608  nfral  2609  riotasvdOLD  6364 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277 This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561
 Copyright terms: Public domain W3C validator