Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfreu Structured version   Unicode version

Theorem nfreu 2882
 Description: Bound-variable hypothesis builder for restricted uniqueness. (Contributed by NM, 30-Oct-2010.) (Revised by Mario Carneiro, 8-Oct-2016.)
Hypotheses
Ref Expression
nfreu.1
nfreu.2
Assertion
Ref Expression
nfreu

Proof of Theorem nfreu
StepHypRef Expression
1 nftru 1563 . . 3
2 nfreu.1 . . . 4
32a1i 11 . . 3
4 nfreu.2 . . . 4
54a1i 11 . . 3
61, 3, 5nfreud 2880 . 2
76trud 1332 1
 Colors of variables: wff set class Syntax hints:   wtru 1325  wnf 1553  wnfc 2559  wreu 2707 This theorem is referenced by:  sbcreug  3237  2reu7  27945  2reu8  27946 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-eu 2285  df-cleq 2429  df-clel 2432  df-nfc 2561  df-reu 2712
 Copyright terms: Public domain W3C validator