Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfreud Structured version   Unicode version

Theorem nfreud 2872
 Description: Deduction version of nfreu 2874. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 8-Oct-2016.)
Hypotheses
Ref Expression
nfreud.1
nfreud.2
nfreud.3
Assertion
Ref Expression
nfreud

Proof of Theorem nfreud
StepHypRef Expression
1 df-reu 2704 . 2
2 nfreud.1 . . 3
3 nfcvf 2593 . . . . . 6
43adantl 453 . . . . 5
5 nfreud.2 . . . . . 6
65adantr 452 . . . . 5
74, 6nfeld 2586 . . . 4
8 nfreud.3 . . . . 5
98adantr 452 . . . 4
107, 9nfand 1843 . . 3
112, 10nfeud2 2292 . 2
121, 11nfxfrd 1580 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 359  wal 1549  wnf 1553   wcel 1725  weu 2280  wnfc 2558  wreu 2699 This theorem is referenced by:  nfreu  2874  nfriotad  6550 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-eu 2284  df-cleq 2428  df-clel 2431  df-nfc 2560  df-reu 2704
 Copyright terms: Public domain W3C validator