Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfriota1 Structured version   Unicode version

Theorem nfriota1 6557
 Description: The abstraction variable in a restricted iota descriptor isn't free. (Contributed by NM, 12-Oct-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
nfriota1
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem nfriota1
StepHypRef Expression
1 df-riota 6549 . 2
2 nfreu1 2878 . . 3
3 nfiota1 5420 . . 3
4 nfcv 2572 . . . 4
5 nfab1 2574 . . . 4
64, 5nffv 5735 . . 3
72, 3, 6nfif 3763 . 2
81, 7nfcxfr 2569 1
 Colors of variables: wff set class Syntax hints:   wa 359   wcel 1725  cab 2422  wnfc 2559  wreu 2707  cif 3739  cio 5416  cfv 5454  cund 6541  crio 6542 This theorem is referenced by:  riotaprop  6573  riotass2  6577  riotass  6578  riotaxfrd  6581  riotasvdOLD  6593  lble  9960  riotaneg  9983  riotaocN  30007  ltrniotaval  31378  cdlemksv2  31644  cdlemkuv2  31664  cdlemk36  31710 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-iota 5418  df-fv 5462  df-riota 6549
 Copyright terms: Public domain W3C validator