Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrmo Structured version   Unicode version

Theorem nfrmo 2883
 Description: Bound-variable hypothesis builder for restricted uniqueness. (Contributed by NM, 16-Jun-2017.)
Hypotheses
Ref Expression
nfreu.1
nfreu.2
Assertion
Ref Expression
nfrmo

Proof of Theorem nfrmo
StepHypRef Expression
1 df-rmo 2713 . 2
2 nftru 1563 . . . 4
3 nfcvf 2594 . . . . . . 7
4 nfreu.1 . . . . . . . 8
54a1i 11 . . . . . . 7
63, 5nfeld 2587 . . . . . 6
7 nfreu.2 . . . . . . 7
87a1i 11 . . . . . 6
96, 8nfand 1843 . . . . 5
109adantl 453 . . . 4
112, 10nfmod2 2294 . . 3
1211trud 1332 . 2
131, 12nfxfr 1579 1
 Colors of variables: wff set class Syntax hints:   wn 3   wa 359   wtru 1325  wal 1549  wnf 1553   wcel 1725  wmo 2282  wnfc 2559  wrmo 2708 This theorem is referenced by:  2rmorex  3138  2reurex  27935 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-eu 2285  df-mo 2286  df-cleq 2429  df-clel 2432  df-nfc 2561  df-rmo 2713
 Copyright terms: Public domain W3C validator