MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrmo Unicode version

Theorem nfrmo 2749
Description: Bound-variable hypothesis builder for restricted uniqueness. (Contributed by NM, 16-Jun-2017.)
Hypotheses
Ref Expression
nfreu.1  |-  F/_ x A
nfreu.2  |-  F/ x ph
Assertion
Ref Expression
nfrmo  |-  F/ x E* y  e.  A ph

Proof of Theorem nfrmo
StepHypRef Expression
1 df-rmo 2585 . 2  |-  ( E* y  e.  A ph  <->  E* y ( y  e.  A  /\  ph )
)
2 nftru 1545 . . . 4  |-  F/ y  T.
3 nfcvf 2474 . . . . . . 7  |-  ( -. 
A. x  x  =  y  ->  F/_ x y )
4 nfreu.1 . . . . . . . 8  |-  F/_ x A
54a1i 10 . . . . . . 7  |-  ( -. 
A. x  x  =  y  ->  F/_ x A )
63, 5nfeld 2467 . . . . . 6  |-  ( -. 
A. x  x  =  y  ->  F/ x  y  e.  A )
7 nfreu.2 . . . . . . 7  |-  F/ x ph
87a1i 10 . . . . . 6  |-  ( -. 
A. x  x  =  y  ->  F/ x ph )
96, 8nfand 1788 . . . . 5  |-  ( -. 
A. x  x  =  y  ->  F/ x
( y  e.  A  /\  ph ) )
109adantl 452 . . . 4  |-  ( (  T.  /\  -.  A. x  x  =  y
)  ->  F/ x
( y  e.  A  /\  ph ) )
112, 10nfmod2 2189 . . 3  |-  (  T. 
->  F/ x E* y
( y  e.  A  /\  ph ) )
1211trud 1314 . 2  |-  F/ x E* y ( y  e.  A  /\  ph )
131, 12nfxfr 1561 1  |-  F/ x E* y  e.  A ph
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 358    T. wtru 1307   A.wal 1531   F/wnf 1535    e. wcel 1701   E*wmo 2177   F/_wnfc 2439   E*wrmo 2580
This theorem is referenced by:  2rmorex  3003  2reurex  27107
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-cleq 2309  df-clel 2312  df-nfc 2441  df-rmo 2585
  Copyright terms: Public domain W3C validator