MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrmo1 Unicode version

Theorem nfrmo1 2822
Description:  x is not free in  E* x  e.  A ph. (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
nfrmo1  |-  F/ x E* x  e.  A ph

Proof of Theorem nfrmo1
StepHypRef Expression
1 df-rmo 2657 . 2  |-  ( E* x  e.  A ph  <->  E* x ( x  e.  A  /\  ph )
)
2 nfmo1 2249 . 2  |-  F/ x E* x ( x  e.  A  /\  ph )
31, 2nfxfr 1576 1  |-  F/ x E* x  e.  A ph
Colors of variables: wff set class
Syntax hints:    /\ wa 359   F/wnf 1550    e. wcel 1717   E*wmo 2239   E*wrmo 2652
This theorem is referenced by:  nfdisj1  4136  2reu3  27634
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753
This theorem depends on definitions:  df-bi 178  df-ex 1548  df-nf 1551  df-eu 2242  df-mo 2243  df-rmo 2657
  Copyright terms: Public domain W3C validator