MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrmo1 Unicode version

Theorem nfrmo1 2724
Description:  x is not free in  E* x  e.  A ph. (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
nfrmo1  |-  F/ x E* x  e.  A ph

Proof of Theorem nfrmo1
StepHypRef Expression
1 df-rmo 2564 . 2  |-  ( E* x  e.  A ph  <->  E* x ( x  e.  A  /\  ph )
)
2 nfmo1 2167 . 2  |-  F/ x E* x ( x  e.  A  /\  ph )
31, 2nfxfr 1560 1  |-  F/ x E* x  e.  A ph
Colors of variables: wff set class
Syntax hints:    /\ wa 358   F/wnf 1534    e. wcel 1696   E*wmo 2157   E*wrmo 2559
This theorem is referenced by:  nfdisj1  4022  2reu3  28069
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-eu 2160  df-mo 2161  df-rmo 2564
  Copyright terms: Public domain W3C validator