MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrmod Unicode version

Theorem nfrmod 2826
Description: Deduction version of nfrmo 2828. (Contributed by NM, 17-Jun-2017.)
Hypotheses
Ref Expression
nfreud.1  |-  F/ y
ph
nfreud.2  |-  ( ph  -> 
F/_ x A )
nfreud.3  |-  ( ph  ->  F/ x ps )
Assertion
Ref Expression
nfrmod  |-  ( ph  ->  F/ x E* y  e.  A ps )

Proof of Theorem nfrmod
StepHypRef Expression
1 df-rmo 2659 . 2  |-  ( E* y  e.  A ps  <->  E* y ( y  e.  A  /\  ps )
)
2 nfreud.1 . . 3  |-  F/ y
ph
3 nfcvf 2547 . . . . . 6  |-  ( -. 
A. x  x  =  y  ->  F/_ x y )
43adantl 453 . . . . 5  |-  ( (
ph  /\  -.  A. x  x  =  y )  -> 
F/_ x y )
5 nfreud.2 . . . . . 6  |-  ( ph  -> 
F/_ x A )
65adantr 452 . . . . 5  |-  ( (
ph  /\  -.  A. x  x  =  y )  -> 
F/_ x A )
74, 6nfeld 2540 . . . 4  |-  ( (
ph  /\  -.  A. x  x  =  y )  ->  F/ x  y  e.  A )
8 nfreud.3 . . . . 5  |-  ( ph  ->  F/ x ps )
98adantr 452 . . . 4  |-  ( (
ph  /\  -.  A. x  x  =  y )  ->  F/ x ps )
107, 9nfand 1833 . . 3  |-  ( (
ph  /\  -.  A. x  x  =  y )  ->  F/ x ( y  e.  A  /\  ps ) )
112, 10nfmod2 2253 . 2  |-  ( ph  ->  F/ x E* y
( y  e.  A  /\  ps ) )
121, 11nfxfrd 1577 1  |-  ( ph  ->  F/ x E* y  e.  A ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359   A.wal 1546   F/wnf 1550    e. wcel 1717   E*wmo 2241   F/_wnfc 2512   E*wrmo 2654
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-cleq 2382  df-clel 2385  df-nfc 2514  df-rmo 2659
  Copyright terms: Public domain W3C validator