MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfs1f Unicode version

Theorem nfs1f 1970
Description: If  x is not free in  ph, it is not free in  [ y  /  x ] ph. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfs1f.1  |-  F/ x ph
Assertion
Ref Expression
nfs1f  |-  F/ x [ y  /  x ] ph

Proof of Theorem nfs1f
StepHypRef Expression
1 nfs1f.1 . . 3  |-  F/ x ph
21sbf 1966 . 2  |-  ( [ y  /  x ] ph 
<-> 
ph )
32, 1nfxfr 1557 1  |-  F/ x [ y  /  x ] ph
Colors of variables: wff set class
Syntax hints:   F/wnf 1531   [wsb 1629
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529  df-nf 1532  df-sb 1630
  Copyright terms: Public domain W3C validator