Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsbd Structured version   Unicode version

Theorem nfsbd 2186
 Description: Deduction version of nfsb 2184. (Contributed by NM, 15-Feb-2013.)
Hypotheses
Ref Expression
nfsbd.1
nfsbd.2
Assertion
Ref Expression
nfsbd
Distinct variable group:   ,
Allowed substitution hints:   (,,)   (,,)

Proof of Theorem nfsbd
StepHypRef Expression
1 nfsbd.1 . . . 4
2 nfsbd.2 . . . 4
31, 2alrimi 1781 . . 3
4 nfsb4t 2154 . . 3
53, 4syl 16 . 2
6 a16nf 2135 . 2
75, 6pm2.61d2 154 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4  wal 1549  wnf 1553  wsb 1658 This theorem is referenced by:  nfabd2  2589 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950 This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659
 Copyright terms: Public domain W3C validator