MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfseq Unicode version

Theorem nfseq 11056
Description: Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfseq.1  |-  F/_ x M
nfseq.2  |-  F/_ x  .+
nfseq.3  |-  F/_ x F
Assertion
Ref Expression
nfseq  |-  F/_ x  seq  M (  .+  ,  F )

Proof of Theorem nfseq
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-seq 11047 . 2  |-  seq  M
(  .+  ,  F
)  =  ( rec ( ( z  e. 
_V ,  w  e. 
_V  |->  <. ( z  +  1 ) ,  ( w  .+  ( F `
 ( z  +  1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) " om )
2 nfcv 2419 . . . . 5  |-  F/_ x _V
3 nfcv 2419 . . . . . 6  |-  F/_ x
( z  +  1 )
4 nfcv 2419 . . . . . . 7  |-  F/_ x w
5 nfseq.2 . . . . . . 7  |-  F/_ x  .+
6 nfseq.3 . . . . . . . 8  |-  F/_ x F
76, 3nffv 5532 . . . . . . 7  |-  F/_ x
( F `  (
z  +  1 ) )
84, 5, 7nfov 5881 . . . . . 6  |-  F/_ x
( w  .+  ( F `  ( z  +  1 ) ) )
93, 8nfop 3812 . . . . 5  |-  F/_ x <. ( z  +  1 ) ,  ( w 
.+  ( F `  ( z  +  1 ) ) ) >.
102, 2, 9nfmpt2 5916 . . . 4  |-  F/_ x
( z  e.  _V ,  w  e.  _V  |->  <. ( z  +  1 ) ,  ( w 
.+  ( F `  ( z  +  1 ) ) ) >.
)
11 nfseq.1 . . . . 5  |-  F/_ x M
126, 11nffv 5532 . . . . 5  |-  F/_ x
( F `  M
)
1311, 12nfop 3812 . . . 4  |-  F/_ x <. M ,  ( F `
 M ) >.
1410, 13nfrdg 6427 . . 3  |-  F/_ x rec ( ( z  e. 
_V ,  w  e. 
_V  |->  <. ( z  +  1 ) ,  ( w  .+  ( F `
 ( z  +  1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. )
15 nfcv 2419 . . 3  |-  F/_ x om
1614, 15nfima 5020 . 2  |-  F/_ x
( rec ( ( z  e.  _V ,  w  e.  _V  |->  <. (
z  +  1 ) ,  ( w  .+  ( F `  ( z  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. ) " om )
171, 16nfcxfr 2416 1  |-  F/_ x  seq  M (  .+  ,  F )
Colors of variables: wff set class
Syntax hints:   F/_wnfc 2406   _Vcvv 2788   <.cop 3643   omcom 4656   "cima 4692   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860   reccrdg 6422   1c1 8738    + caddc 8740    seq cseq 11046
This theorem is referenced by:  nfsum1  12163  nfsum  12164  nfprod1  25310  nfprod  25311  fmuldfeqlem1  27712  fmuldfeq  27713  stoweidlem51  27800
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-xp 4695  df-cnv 4697  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-recs 6388  df-rdg 6423  df-seq 11047
  Copyright terms: Public domain W3C validator