MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsn Unicode version

Theorem nfsn 3691
Description: Bound-variable hypothesis builder for singletons. (Contributed by NM, 14-Nov-1995.)
Hypothesis
Ref Expression
nfsn.1  |-  F/_ x A
Assertion
Ref Expression
nfsn  |-  F/_ x { A }

Proof of Theorem nfsn
StepHypRef Expression
1 dfsn2 3654 . 2  |-  { A }  =  { A ,  A }
2 nfsn.1 . . 3  |-  F/_ x A
32, 2nfpr 3680 . 2  |-  F/_ x { A ,  A }
41, 3nfcxfr 2416 1  |-  F/_ x { A }
Colors of variables: wff set class
Syntax hints:   F/_wnfc 2406   {csn 3640   {cpr 3641
This theorem is referenced by:  nfop  3812  nfsuc  4463  sniota  5246  dfmpt2  6209  nfaltop  24514  stoweidlem21  27770  stoweidlem47  27796  nfdfat  27993  bnj958  28972  bnj1000  28973  bnj1446  29075  bnj1447  29076  bnj1448  29077  bnj1466  29083  bnj1467  29084
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-un 3157  df-sn 3646  df-pr 3647
  Copyright terms: Public domain W3C validator