MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsup Unicode version

Theorem nfsup 7202
Description: Hypothesis builder for supremum. (Contributed by Mario Carneiro, 20-Mar-2014.)
Hypotheses
Ref Expression
nfsup.1  |-  F/_ x A
nfsup.2  |-  F/_ x B
nfsup.3  |-  F/_ x R
Assertion
Ref Expression
nfsup  |-  F/_ x sup ( A ,  B ,  R )

Proof of Theorem nfsup
StepHypRef Expression
1 dfsup2 7195 . 2  |-  sup ( A ,  B ,  R )  =  U. ( B  \  (
( `' R " A )  u.  ( R " ( B  \ 
( `' R " A ) ) ) ) )
2 nfsup.2 . . . 4  |-  F/_ x B
3 nfsup.3 . . . . . . 7  |-  F/_ x R
43nfcnv 4860 . . . . . 6  |-  F/_ x `' R
5 nfsup.1 . . . . . 6  |-  F/_ x A
64, 5nfima 5020 . . . . 5  |-  F/_ x
( `' R " A )
72, 6nfdif 3297 . . . . . 6  |-  F/_ x
( B  \  ( `' R " A ) )
83, 7nfima 5020 . . . . 5  |-  F/_ x
( R " ( B  \  ( `' R " A ) ) )
96, 8nfun 3331 . . . 4  |-  F/_ x
( ( `' R " A )  u.  ( R " ( B  \ 
( `' R " A ) ) ) )
102, 9nfdif 3297 . . 3  |-  F/_ x
( B  \  (
( `' R " A )  u.  ( R " ( B  \ 
( `' R " A ) ) ) ) )
1110nfuni 3833 . 2  |-  F/_ x U. ( B  \  (
( `' R " A )  u.  ( R " ( B  \ 
( `' R " A ) ) ) ) )
121, 11nfcxfr 2416 1  |-  F/_ x sup ( A ,  B ,  R )
Colors of variables: wff set class
Syntax hints:   F/_wnfc 2406    \ cdif 3149    u. cun 3150   U.cuni 3827   `'ccnv 4688   "cima 4692   supcsup 7193
This theorem is referenced by:  iundisj  18905  itg2cnlem1  19116  iundisjfi  23363  iundisjf  23365  totbndbnd  26513  aomclem8  27159  stoweidlem62  27811
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-xp 4695  df-cnv 4697  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-sup 7194
  Copyright terms: Public domain W3C validator