Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfsymdif Structured version   Unicode version

Theorem nfsymdif 25659
 Description: Hypothesis builder for symmetric difference. (Contributed by Scott Fenton, 19-Feb-2013.) (Revised by Mario Carneiro, 11-Dec-2016.)
Hypotheses
Ref Expression
nfsymdif.1
nfsymdif.2
Assertion
Ref Expression
nfsymdif (++)

Proof of Theorem nfsymdif
StepHypRef Expression
1 df-symdif 25655 . 2 (++)
2 nfsymdif.1 . . . 4
3 nfsymdif.2 . . . 4
42, 3nfdif 3460 . . 3
53, 2nfdif 3460 . . 3
64, 5nfun 3495 . 2
71, 6nfcxfr 2568 1 (++)
 Colors of variables: wff set class Syntax hints:  wnfc 2558   cdif 3309   cun 3310  (++)csymdif 25654 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-rab 2706  df-dif 3315  df-un 3317  df-symdif 25655
 Copyright terms: Public domain W3C validator