Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfunid Structured version   Unicode version

Theorem nfunid 4015
 Description: Deduction version of nfuni 4014. (Contributed by NM, 18-Feb-2013.)
Hypothesis
Ref Expression
nfunid.3
Assertion
Ref Expression
nfunid

Proof of Theorem nfunid
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfuni2 4010 . 2
2 nfv 1629 . . 3
3 nfv 1629 . . . 4
4 nfunid.3 . . . 4
5 nfvd 1630 . . . 4
63, 4, 5nfrexd 2751 . . 3
72, 6nfabd 2591 . 2
81, 7nfcxfrd 2570 1
 Colors of variables: wff set class Syntax hints:   wi 4  cab 2422  wnfc 2559  wrex 2699  cuni 4008 This theorem is referenced by:  dfnfc2  4026  nfiotad  5414 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ral 2703  df-rex 2704  df-uni 4009
 Copyright terms: Public domain W3C validator