MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfwe Unicode version

Theorem nfwe 4369
Description: Bound-variable hypothesis builder for well-orderings. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nffr.r  |-  F/_ x R
nffr.a  |-  F/_ x A
Assertion
Ref Expression
nfwe  |-  F/ x  R  We  A

Proof of Theorem nfwe
StepHypRef Expression
1 df-we 4354 . 2  |-  ( R  We  A  <->  ( R  Fr  A  /\  R  Or  A ) )
2 nffr.r . . . 4  |-  F/_ x R
3 nffr.a . . . 4  |-  F/_ x A
42, 3nffr 4367 . . 3  |-  F/ x  R  Fr  A
52, 3nfso 4320 . . 3  |-  F/ x  R  Or  A
64, 5nfan 1771 . 2  |-  F/ x
( R  Fr  A  /\  R  Or  A
)
71, 6nfxfr 1557 1  |-  F/ x  R  We  A
Colors of variables: wff set class
Syntax hints:    /\ wa 358   F/wnf 1531   F/_wnfc 2406    Or wor 4313    Fr wfr 4349    We wwe 4351
This theorem is referenced by:  nfoi  7229  aomclem6  27156
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-po 4314  df-so 4315  df-fr 4352  df-we 4354
  Copyright terms: Public domain W3C validator