MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfwrd Unicode version

Theorem nfwrd 11703
Description: Hypothesis builder for Word  S. (Contributed by Mario Carneiro, 26-Feb-2016.)
Hypothesis
Ref Expression
nfwrd.1  |-  F/_ x S
Assertion
Ref Expression
nfwrd  |-  F/_ xWord  S

Proof of Theorem nfwrd
Dummy variables  w  l are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-word 11686 . 2  |- Word  S  =  { w  |  E. l  e.  NN0  w : ( 0..^ l ) --> S }
2 nfcv 2548 . . . 4  |-  F/_ x NN0
3 nfcv 2548 . . . . 5  |-  F/_ x w
4 nfcv 2548 . . . . 5  |-  F/_ x
( 0..^ l )
5 nfwrd.1 . . . . 5  |-  F/_ x S
63, 4, 5nff 5556 . . . 4  |-  F/ x  w : ( 0..^ l ) --> S
72, 6nfrex 2729 . . 3  |-  F/ x E. l  e.  NN0  w : ( 0..^ l ) --> S
87nfab 2552 . 2  |-  F/_ x { w  |  E. l  e.  NN0  w : ( 0..^ l ) --> S }
91, 8nfcxfr 2545 1  |-  F/_ xWord  S
Colors of variables: wff set class
Syntax hints:   {cab 2398   F/_wnfc 2535   E.wrex 2675   -->wf 5417  (class class class)co 6048   0cc0 8954   NN0cn0 10185  ..^cfzo 11098  Word cword 11680
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ral 2679  df-rex 2680  df-rab 2683  df-v 2926  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-sn 3788  df-pr 3789  df-op 3791  df-br 4181  df-opab 4235  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-fun 5423  df-fn 5424  df-f 5425  df-word 11686
  Copyright terms: Public domain W3C validator