Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfwrd Structured version   Unicode version

Theorem nfwrd 11778
 Description: Hypothesis builder for Word . (Contributed by Mario Carneiro, 26-Feb-2016.)
Hypothesis
Ref Expression
nfwrd.1
Assertion
Ref Expression
nfwrd Word

Proof of Theorem nfwrd
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-word 11761 . 2 Word ..^
2 nfcv 2579 . . . 4
3 nfcv 2579 . . . . 5
4 nfcv 2579 . . . . 5 ..^
5 nfwrd.1 . . . . 5
63, 4, 5nff 5624 . . . 4 ..^
72, 6nfrex 2768 . . 3 ..^
87nfab 2583 . 2 ..^
91, 8nfcxfr 2576 1 Word
 Colors of variables: wff set class Syntax hints:  cab 2429  wnfc 2566  wrex 2713  wf 5485  (class class class)co 6117  cc0 9028  cn0 10259  ..^cfzo 11173  Word cword 11755 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-6 1747  ax-7 1752  ax-11 1764  ax-12 1954  ax-ext 2424 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1661  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ral 2717  df-rex 2718  df-rab 2721  df-v 2967  df-dif 3312  df-un 3314  df-in 3316  df-ss 3323  df-nul 3617  df-if 3768  df-sn 3849  df-pr 3850  df-op 3852  df-br 4244  df-opab 4298  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-fun 5491  df-fn 5492  df-f 5493  df-word 11761
 Copyright terms: Public domain W3C validator