MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nghmfval Unicode version

Theorem nghmfval 18247
Description: A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypothesis
Ref Expression
nmofval.1  |-  N  =  ( S normOp T )
Assertion
Ref Expression
nghmfval  |-  ( S NGHom 
T )  =  ( `' N " RR )

Proof of Theorem nghmfval
Dummy variables  s 
t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 5883 . . . . . 6  |-  ( ( s  =  S  /\  t  =  T )  ->  ( s normOp t )  =  ( S normOp T ) )
2 nmofval.1 . . . . . 6  |-  N  =  ( S normOp T )
31, 2syl6eqr 2346 . . . . 5  |-  ( ( s  =  S  /\  t  =  T )  ->  ( s normOp t )  =  N )
43cnveqd 4873 . . . 4  |-  ( ( s  =  S  /\  t  =  T )  ->  `' ( s normOp t )  =  `' N
)
54imaeq1d 5027 . . 3  |-  ( ( s  =  S  /\  t  =  T )  ->  ( `' ( s
normOp t ) " RR )  =  ( `' N " RR ) )
6 df-nghm 18234 . . 3  |- NGHom  =  ( s  e. NrmGrp ,  t  e. NrmGrp  |->  ( `' ( s
normOp t ) " RR ) )
7 ovex 5899 . . . . . 6  |-  ( S
normOp T )  e.  _V
82, 7eqeltri 2366 . . . . 5  |-  N  e. 
_V
98cnvex 5225 . . . 4  |-  `' N  e.  _V
10 imaexg 5042 . . . 4  |-  ( `' N  e.  _V  ->  ( `' N " RR )  e.  _V )
119, 10ax-mp 8 . . 3  |-  ( `' N " RR )  e.  _V
125, 6, 11ovmpt2a 5994 . 2  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  ( S NGHom  T )  =  ( `' N " RR ) )
13 ovex 5899 . . . . . . 7  |-  ( s
normOp t )  e.  _V
1413cnvex 5225 . . . . . 6  |-  `' ( s normOp t )  e. 
_V
15 imaexg 5042 . . . . . 6  |-  ( `' ( s normOp t )  e.  _V  ->  ( `' ( s normOp t ) " RR )  e.  _V )
1614, 15ax-mp 8 . . . . 5  |-  ( `' ( s normOp t )
" RR )  e. 
_V
176, 16dmmpt2 6210 . . . 4  |-  dom NGHom  =  (NrmGrp  X. NrmGrp )
1817ndmov 6020 . . 3  |-  ( -.  ( S  e. NrmGrp  /\  T  e. NrmGrp )  ->  ( S NGHom  T )  =  (/) )
19 nmoffn 18236 . . . . . . . . . 10  |-  normOp  Fn  (NrmGrp  X. NrmGrp
)
20 fndm 5359 . . . . . . . . . 10  |-  ( normOp  Fn  (NrmGrp  X. NrmGrp )  ->  dom  normOp  =  (NrmGrp  X. NrmGrp )
)
2119, 20ax-mp 8 . . . . . . . . 9  |-  dom  normOp  =  (NrmGrp  X. NrmGrp )
2221ndmov 6020 . . . . . . . 8  |-  ( -.  ( S  e. NrmGrp  /\  T  e. NrmGrp )  ->  ( S normOp T )  =  (/) )
232, 22syl5eq 2340 . . . . . . 7  |-  ( -.  ( S  e. NrmGrp  /\  T  e. NrmGrp )  ->  N  =  (/) )
2423cnveqd 4873 . . . . . 6  |-  ( -.  ( S  e. NrmGrp  /\  T  e. NrmGrp )  ->  `' N  =  `' (/) )
25 cnv0 5100 . . . . . 6  |-  `' (/)  =  (/)
2624, 25syl6eq 2344 . . . . 5  |-  ( -.  ( S  e. NrmGrp  /\  T  e. NrmGrp )  ->  `' N  =  (/) )
2726imaeq1d 5027 . . . 4  |-  ( -.  ( S  e. NrmGrp  /\  T  e. NrmGrp )  ->  ( `' N " RR )  =  ( (/) " RR ) )
28 0ima 5047 . . . 4  |-  ( (/) " RR )  =  (/)
2927, 28syl6eq 2344 . . 3  |-  ( -.  ( S  e. NrmGrp  /\  T  e. NrmGrp )  ->  ( `' N " RR )  =  (/) )
3018, 29eqtr4d 2331 . 2  |-  ( -.  ( S  e. NrmGrp  /\  T  e. NrmGrp )  ->  ( S NGHom  T )  =  ( `' N " RR ) )
3112, 30pm2.61i 156 1  |-  ( S NGHom 
T )  =  ( `' N " RR )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 358    = wceq 1632    e. wcel 1696   _Vcvv 2801   (/)c0 3468    X. cxp 4703   `'ccnv 4704   dom cdm 4705   "cima 4708    Fn wfn 5266  (class class class)co 5874   RRcr 8752  NrmGrpcngp 18116   normOpcnmo 18230   NGHom cnghm 18231
This theorem is referenced by:  isnghm  18248
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-ico 10678  df-nmo 18233  df-nghm 18234
  Copyright terms: Public domain W3C validator