MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngptgp Unicode version

Theorem ngptgp 18152
Description: A normed abelian group is a topological group (with the topology induced by the metric induced by the norm). (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
ngptgp  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  G  e.  TopGrp )

Proof of Theorem ngptgp
Dummy variables  u  r  v  x  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ngpgrp 18121 . . 3  |-  ( G  e. NrmGrp  ->  G  e.  Grp )
21adantr 451 . 2  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  G  e.  Grp )
3 ngpms 18122 . . . 4  |-  ( G  e. NrmGrp  ->  G  e.  MetSp )
43adantr 451 . . 3  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  G  e.  MetSp )
5 mstps 18001 . . 3  |-  ( G  e.  MetSp  ->  G  e.  TopSp
)
64, 5syl 15 . 2  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  G  e.  TopSp )
7 eqid 2283 . . . . . 6  |-  ( Base `  G )  =  (
Base `  G )
8 eqid 2283 . . . . . 6  |-  ( -g `  G )  =  (
-g `  G )
97, 8grpsubf 14545 . . . . 5  |-  ( G  e.  Grp  ->  ( -g `  G ) : ( ( Base `  G
)  X.  ( Base `  G ) ) --> (
Base `  G )
)
102, 9syl 15 . . . 4  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  ( -g `  G ) : ( ( Base `  G
)  X.  ( Base `  G ) ) --> (
Base `  G )
)
11 rphalfcl 10378 . . . . . . . 8  |-  ( z  e.  RR+  ->  ( z  /  2 )  e.  RR+ )
1211adantl 452 . . . . . . 7  |-  ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  ->  (
z  /  2 )  e.  RR+ )
13 simplll 734 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( G  e. NrmGrp  /\  G  e.  Abel ) )
1413, 4syl 15 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  ->  G  e.  MetSp )
15 simpllr 735 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( x  e.  (
Base `  G )  /\  y  e.  ( Base `  G ) ) )
1615simpld 445 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  ->  x  e.  ( Base `  G ) )
17 simprl 732 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  ->  u  e.  ( Base `  G ) )
18 eqid 2283 . . . . . . . . . . . . 13  |-  ( dist `  G )  =  (
dist `  G )
197, 18mscl 18007 . . . . . . . . . . . 12  |-  ( ( G  e.  MetSp  /\  x  e.  ( Base `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( x
( dist `  G )
u )  e.  RR )
2014, 16, 17, 19syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( x ( dist `  G ) u )  e.  RR )
2115simprd 449 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
y  e.  ( Base `  G ) )
22 simprr 733 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
v  e.  ( Base `  G ) )
237, 18mscl 18007 . . . . . . . . . . . 12  |-  ( ( G  e.  MetSp  /\  y  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )
)  ->  ( y
( dist `  G )
v )  e.  RR )
2414, 21, 22, 23syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( y ( dist `  G ) v )  e.  RR )
25 rpre 10360 . . . . . . . . . . . 12  |-  ( z  e.  RR+  ->  z  e.  RR )
2625ad2antlr 707 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
z  e.  RR )
27 lt2halves 9946 . . . . . . . . . . 11  |-  ( ( ( x ( dist `  G ) u )  e.  RR  /\  (
y ( dist `  G
) v )  e.  RR  /\  z  e.  RR )  ->  (
( ( x (
dist `  G )
u )  <  (
z  /  2 )  /\  ( y (
dist `  G )
v )  <  (
z  /  2 ) )  ->  ( (
x ( dist `  G
) u )  +  ( y ( dist `  G ) v ) )  <  z ) )
2820, 24, 26, 27syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( ( x ( dist `  G
) u )  < 
( z  /  2
)  /\  ( y
( dist `  G )
v )  <  (
z  /  2 ) )  ->  ( (
x ( dist `  G
) u )  +  ( y ( dist `  G ) v ) )  <  z ) )
2913, 2syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  ->  G  e.  Grp )
307, 8grpsubcl 14546 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Grp  /\  x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  (
x ( -g `  G
) y )  e.  ( Base `  G
) )
3129, 16, 21, 30syl3anc 1182 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( x ( -g `  G ) y )  e.  ( Base `  G
) )
327, 8grpsubcl 14546 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Grp  /\  u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) )  ->  (
u ( -g `  G
) v )  e.  ( Base `  G
) )
3329, 17, 22, 32syl3anc 1182 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( u ( -g `  G ) v )  e.  ( Base `  G
) )
347, 8grpsubcl 14546 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Grp  /\  u  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  (
u ( -g `  G
) y )  e.  ( Base `  G
) )
3529, 17, 21, 34syl3anc 1182 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( u ( -g `  G ) y )  e.  ( Base `  G
) )
367, 18mstri 18015 . . . . . . . . . . . . 13  |-  ( ( G  e.  MetSp  /\  (
( x ( -g `  G ) y )  e.  ( Base `  G
)  /\  ( u
( -g `  G ) v )  e.  (
Base `  G )  /\  ( u ( -g `  G ) y )  e.  ( Base `  G
) ) )  -> 
( ( x (
-g `  G )
y ) ( dist `  G ) ( u ( -g `  G
) v ) )  <_  ( ( ( x ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) y ) )  +  ( ( u ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) v ) ) ) )
3714, 31, 33, 35, 36syl13anc 1184 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( x (
-g `  G )
y ) ( dist `  G ) ( u ( -g `  G
) v ) )  <_  ( ( ( x ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) y ) )  +  ( ( u ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) v ) ) ) )
3813simpld 445 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  ->  G  e. NrmGrp )
397, 8, 18ngpsubcan 18135 . . . . . . . . . . . . . 14  |-  ( ( G  e. NrmGrp  /\  (
x  e.  ( Base `  G )  /\  u  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  ->  (
( x ( -g `  G ) y ) ( dist `  G
) ( u (
-g `  G )
y ) )  =  ( x ( dist `  G ) u ) )
4038, 16, 17, 21, 39syl13anc 1184 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( x (
-g `  G )
y ) ( dist `  G ) ( u ( -g `  G
) y ) )  =  ( x (
dist `  G )
u ) )
41 eqid 2283 . . . . . . . . . . . . . . . . 17  |-  ( +g  `  G )  =  ( +g  `  G )
42 eqid 2283 . . . . . . . . . . . . . . . . 17  |-  ( inv g `  G )  =  ( inv g `  G )
437, 41, 42, 8grpsubval 14525 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  (
u ( -g `  G
) y )  =  ( u ( +g  `  G ) ( ( inv g `  G
) `  y )
) )
4417, 21, 43syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( u ( -g `  G ) y )  =  ( u ( +g  `  G ) ( ( inv g `  G ) `  y
) ) )
457, 41, 42, 8grpsubval 14525 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) )  ->  (
u ( -g `  G
) v )  =  ( u ( +g  `  G ) ( ( inv g `  G
) `  v )
) )
4645adantl 452 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( u ( -g `  G ) v )  =  ( u ( +g  `  G ) ( ( inv g `  G ) `  v
) ) )
4744, 46oveq12d 5876 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( u (
-g `  G )
y ) ( dist `  G ) ( u ( -g `  G
) v ) )  =  ( ( u ( +g  `  G
) ( ( inv g `  G ) `
 y ) ) ( dist `  G
) ( u ( +g  `  G ) ( ( inv g `  G ) `  v
) ) ) )
487, 42grpinvcl 14527 . . . . . . . . . . . . . . . 16  |-  ( ( G  e.  Grp  /\  y  e.  ( Base `  G ) )  -> 
( ( inv g `  G ) `  y
)  e.  ( Base `  G ) )
4929, 21, 48syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( inv g `  G ) `  y
)  e.  ( Base `  G ) )
507, 42grpinvcl 14527 . . . . . . . . . . . . . . . 16  |-  ( ( G  e.  Grp  /\  v  e.  ( Base `  G ) )  -> 
( ( inv g `  G ) `  v
)  e.  ( Base `  G ) )
5129, 22, 50syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( inv g `  G ) `  v
)  e.  ( Base `  G ) )
527, 41, 18ngplcan 18132 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  (
( ( inv g `  G ) `  y
)  e.  ( Base `  G )  /\  (
( inv g `  G ) `  v
)  e.  ( Base `  G )  /\  u  e.  ( Base `  G
) ) )  -> 
( ( u ( +g  `  G ) ( ( inv g `  G ) `  y
) ) ( dist `  G ) ( u ( +g  `  G
) ( ( inv g `  G ) `
 v ) ) )  =  ( ( ( inv g `  G ) `  y
) ( dist `  G
) ( ( inv g `  G ) `
 v ) ) )
5313, 49, 51, 17, 52syl13anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( u ( +g  `  G ) ( ( inv g `  G ) `  y
) ) ( dist `  G ) ( u ( +g  `  G
) ( ( inv g `  G ) `
 v ) ) )  =  ( ( ( inv g `  G ) `  y
) ( dist `  G
) ( ( inv g `  G ) `
 v ) ) )
547, 42, 18ngpinvds 18134 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  (
y  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( ( inv g `  G ) `
 y ) (
dist `  G )
( ( inv g `  G ) `  v
) )  =  ( y ( dist `  G
) v ) )
5513, 21, 22, 54syl12anc 1180 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( ( inv g `  G ) `
 y ) (
dist `  G )
( ( inv g `  G ) `  v
) )  =  ( y ( dist `  G
) v ) )
5647, 53, 553eqtrd 2319 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( u (
-g `  G )
y ) ( dist `  G ) ( u ( -g `  G
) v ) )  =  ( y (
dist `  G )
v ) )
5740, 56oveq12d 5876 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( ( x ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) y ) )  +  ( ( u ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) v ) ) )  =  ( ( x ( dist `  G ) u )  +  ( y (
dist `  G )
v ) ) )
5837, 57breqtrd 4047 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( x (
-g `  G )
y ) ( dist `  G ) ( u ( -g `  G
) v ) )  <_  ( ( x ( dist `  G
) u )  +  ( y ( dist `  G ) v ) ) )
597, 18mscl 18007 . . . . . . . . . . . . 13  |-  ( ( G  e.  MetSp  /\  (
x ( -g `  G
) y )  e.  ( Base `  G
)  /\  ( u
( -g `  G ) v )  e.  (
Base `  G )
)  ->  ( (
x ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) v ) )  e.  RR )
6014, 31, 33, 59syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( x (
-g `  G )
y ) ( dist `  G ) ( u ( -g `  G
) v ) )  e.  RR )
6120, 24readdcld 8862 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( x (
dist `  G )
u )  +  ( y ( dist `  G
) v ) )  e.  RR )
62 lelttr 8912 . . . . . . . . . . . 12  |-  ( ( ( ( x (
-g `  G )
y ) ( dist `  G ) ( u ( -g `  G
) v ) )  e.  RR  /\  (
( x ( dist `  G ) u )  +  ( y (
dist `  G )
v ) )  e.  RR  /\  z  e.  RR )  ->  (
( ( ( x ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) v ) )  <_  ( (
x ( dist `  G
) u )  +  ( y ( dist `  G ) v ) )  /\  ( ( x ( dist `  G
) u )  +  ( y ( dist `  G ) v ) )  <  z )  ->  ( ( x ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) v ) )  <  z ) )
6360, 61, 26, 62syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( ( ( x ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) v ) )  <_  ( (
x ( dist `  G
) u )  +  ( y ( dist `  G ) v ) )  /\  ( ( x ( dist `  G
) u )  +  ( y ( dist `  G ) v ) )  <  z )  ->  ( ( x ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) v ) )  <  z ) )
6458, 63mpand 656 . . . . . . . . . 10  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( ( x ( dist `  G
) u )  +  ( y ( dist `  G ) v ) )  <  z  -> 
( ( x (
-g `  G )
y ) ( dist `  G ) ( u ( -g `  G
) v ) )  <  z ) )
6528, 64syld 40 . . . . . . . . 9  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( ( x ( dist `  G
) u )  < 
( z  /  2
)  /\  ( y
( dist `  G )
v )  <  (
z  /  2 ) )  ->  ( (
x ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) v ) )  <  z ) )
6616, 17ovresd 5988 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( x ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) u )  =  ( x ( dist `  G
) u ) )
6766breq1d 4033 . . . . . . . . . 10  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( x ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) u )  < 
( z  /  2
)  <->  ( x (
dist `  G )
u )  <  (
z  /  2 ) ) )
6821, 22ovresd 5988 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  =  ( y ( dist `  G
) v ) )
6968breq1d 4033 . . . . . . . . . 10  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( y ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) v )  < 
( z  /  2
)  <->  ( y (
dist `  G )
v )  <  (
z  /  2 ) ) )
7067, 69anbi12d 691 . . . . . . . . 9  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( ( x ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) u )  < 
( z  /  2
)  /\  ( y
( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) v )  < 
( z  /  2
) )  <->  ( (
x ( dist `  G
) u )  < 
( z  /  2
)  /\  ( y
( dist `  G )
v )  <  (
z  /  2 ) ) ) )
7131, 33ovresd 5988 . . . . . . . . . 10  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( x (
-g `  G )
y ) ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) ( u ( -g `  G ) v ) )  =  ( ( x ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) v ) ) )
7271breq1d 4033 . . . . . . . . 9  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( ( x ( -g `  G
) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z  <->  ( ( x ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) v ) )  <  z ) )
7365, 70, 723imtr4d 259 . . . . . . . 8  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( ( x ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) u )  < 
( z  /  2
)  /\  ( y
( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) v )  < 
( z  /  2
) )  ->  (
( x ( -g `  G ) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z ) )
7473ralrimivva 2635 . . . . . . 7  |-  ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  ->  A. u  e.  ( Base `  G
) A. v  e.  ( Base `  G
) ( ( ( x ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) u )  <  ( z  /  2 )  /\  ( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  <  (
z  /  2 ) )  ->  ( (
x ( -g `  G
) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z ) )
75 breq2 4027 . . . . . . . . . . 11  |-  ( r  =  ( z  / 
2 )  ->  (
( x ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) u )  <  r  <->  ( x ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) u )  <  ( z  /  2 ) ) )
76 breq2 4027 . . . . . . . . . . 11  |-  ( r  =  ( z  / 
2 )  ->  (
( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  <  r  <->  ( y ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) v )  <  ( z  /  2 ) ) )
7775, 76anbi12d 691 . . . . . . . . . 10  |-  ( r  =  ( z  / 
2 )  ->  (
( ( x ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) u )  < 
r  /\  ( y
( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) v )  < 
r )  <->  ( (
x ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) u )  <  ( z  /  2 )  /\  ( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  <  (
z  /  2 ) ) ) )
7877imbi1d 308 . . . . . . . . 9  |-  ( r  =  ( z  / 
2 )  ->  (
( ( ( x ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) u )  < 
r  /\  ( y
( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) v )  < 
r )  ->  (
( x ( -g `  G ) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z )  <->  ( (
( x ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) u )  <  (
z  /  2 )  /\  ( y ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) v )  < 
( z  /  2
) )  ->  (
( x ( -g `  G ) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z ) ) )
79782ralbidv 2585 . . . . . . . 8  |-  ( r  =  ( z  / 
2 )  ->  ( A. u  e.  ( Base `  G ) A. v  e.  ( Base `  G ) ( ( ( x ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) u )  <  r  /\  ( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  <  r
)  ->  ( (
x ( -g `  G
) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z )  <->  A. u  e.  ( Base `  G
) A. v  e.  ( Base `  G
) ( ( ( x ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) u )  <  ( z  /  2 )  /\  ( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  <  (
z  /  2 ) )  ->  ( (
x ( -g `  G
) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z ) ) )
8079rspcev 2884 . . . . . . 7  |-  ( ( ( z  /  2
)  e.  RR+  /\  A. u  e.  ( Base `  G ) A. v  e.  ( Base `  G
) ( ( ( x ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) u )  <  ( z  /  2 )  /\  ( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  <  (
z  /  2 ) )  ->  ( (
x ( -g `  G
) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z ) )  ->  E. r  e.  RR+  A. u  e.  ( Base `  G
) A. v  e.  ( Base `  G
) ( ( ( x ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) u )  <  r  /\  ( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  <  r
)  ->  ( (
x ( -g `  G
) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z ) )
8112, 74, 80syl2anc 642 . . . . . 6  |-  ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  ->  E. r  e.  RR+  A. u  e.  ( Base `  G
) A. v  e.  ( Base `  G
) ( ( ( x ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) u )  <  r  /\  ( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  <  r
)  ->  ( (
x ( -g `  G
) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z ) )
8281ralrimiva 2626 . . . . 5  |-  ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  (
x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) ) )  ->  A. z  e.  RR+  E. r  e.  RR+  A. u  e.  ( Base `  G
) A. v  e.  ( Base `  G
) ( ( ( x ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) u )  <  r  /\  ( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  <  r
)  ->  ( (
x ( -g `  G
) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z ) )
8382ralrimivva 2635 . . . 4  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  A. x  e.  ( Base `  G
) A. y  e.  ( Base `  G
) A. z  e.  RR+  E. r  e.  RR+  A. u  e.  ( Base `  G ) A. v  e.  ( Base `  G
) ( ( ( x ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) u )  <  r  /\  ( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  <  r
)  ->  ( (
x ( -g `  G
) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z ) )
84 msxms 18000 . . . . . 6  |-  ( G  e.  MetSp  ->  G  e.  *
MetSp )
85 eqid 2283 . . . . . . 7  |-  ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) )  =  ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) )
867, 85xmsxmet 18002 . . . . . 6  |-  ( G  e.  * MetSp  ->  (
( dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) )  e.  ( * Met `  ( Base `  G
) ) )
874, 84, 863syl 18 . . . . 5  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  (
( dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) )  e.  ( * Met `  ( Base `  G
) ) )
88 eqid 2283 . . . . . 6  |-  ( MetOpen `  ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) )  =  (
MetOpen `  ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) )
8988, 88, 88txmetcn 18094 . . . . 5  |-  ( ( ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) )  e.  ( * Met `  ( Base `  G ) )  /\  ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) )  e.  ( * Met `  ( Base `  G ) )  /\  ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) )  e.  ( * Met `  ( Base `  G ) ) )  ->  ( ( -g `  G )  e.  ( ( ( MetOpen `  (
( dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) )  tX  ( MetOpen `  ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ) )  Cn  ( MetOpen `  ( ( dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) ) )  <->  ( ( -g `  G ) : ( ( Base `  G
)  X.  ( Base `  G ) ) --> (
Base `  G )  /\  A. x  e.  (
Base `  G ) A. y  e.  ( Base `  G ) A. z  e.  RR+  E. r  e.  RR+  A. u  e.  ( Base `  G
) A. v  e.  ( Base `  G
) ( ( ( x ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) u )  <  r  /\  ( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  <  r
)  ->  ( (
x ( -g `  G
) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z ) ) ) )
9087, 87, 87, 89syl3anc 1182 . . . 4  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  (
( -g `  G )  e.  ( ( (
MetOpen `  ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) ) 
tX  ( MetOpen `  (
( dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) ) )  Cn  ( MetOpen
`  ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) ) )  <->  ( ( -g `  G ) : ( ( Base `  G
)  X.  ( Base `  G ) ) --> (
Base `  G )  /\  A. x  e.  (
Base `  G ) A. y  e.  ( Base `  G ) A. z  e.  RR+  E. r  e.  RR+  A. u  e.  ( Base `  G
) A. v  e.  ( Base `  G
) ( ( ( x ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) u )  <  r  /\  ( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  <  r
)  ->  ( (
x ( -g `  G
) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z ) ) ) )
9110, 83, 90mpbir2and 888 . . 3  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  ( -g `  G )  e.  ( ( ( MetOpen `  ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) )  tX  ( MetOpen
`  ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) ) )  Cn  ( MetOpen `  ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ) ) )
92 eqid 2283 . . . . . . 7  |-  ( TopOpen `  G )  =  (
TopOpen `  G )
9392, 7, 85mstopn 17998 . . . . . 6  |-  ( G  e.  MetSp  ->  ( TopOpen `  G )  =  (
MetOpen `  ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) ) )
944, 93syl 15 . . . . 5  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  ( TopOpen
`  G )  =  ( MetOpen `  ( ( dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) ) )
9594, 94oveq12d 5876 . . . 4  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  (
( TopOpen `  G )  tX  ( TopOpen `  G )
)  =  ( (
MetOpen `  ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) ) 
tX  ( MetOpen `  (
( dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) ) ) )
9695, 94oveq12d 5876 . . 3  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  (
( ( TopOpen `  G
)  tX  ( TopOpen `  G ) )  Cn  ( TopOpen `  G )
)  =  ( ( ( MetOpen `  ( ( dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) )  tX  ( MetOpen `  ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ) )  Cn  ( MetOpen `  ( ( dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) ) ) )
9791, 96eleqtrrd 2360 . 2  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  ( -g `  G )  e.  ( ( ( TopOpen `  G )  tX  ( TopOpen
`  G ) )  Cn  ( TopOpen `  G
) ) )
9892, 8istgp2 17774 . 2  |-  ( G  e.  TopGrp 
<->  ( G  e.  Grp  /\  G  e.  TopSp  /\  ( -g `  G )  e.  ( ( ( TopOpen `  G )  tX  ( TopOpen
`  G ) )  Cn  ( TopOpen `  G
) ) ) )
992, 6, 97, 98syl3anbrc 1136 1  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  G  e.  TopGrp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   class class class wbr 4023    X. cxp 4687    |` cres 4691   -->wf 5251   ` cfv 5255  (class class class)co 5858   RRcr 8736    + caddc 8740    < clt 8867    <_ cle 8868    / cdiv 9423   2c2 9795   RR+crp 10354   Basecbs 13148   +g cplusg 13208   distcds 13217   TopOpenctopn 13326   Grpcgrp 14362   inv gcminusg 14363   -gcsg 14365   Abelcabel 15090   * Metcxmt 16369   MetOpencmopn 16372   TopSpctps 16634    Cn ccn 16954    tX ctx 17255   TopGrpctgp 17754   *
MetSpcxme 17882   MetSpcmt 17883  NrmGrpcngp 18100
This theorem is referenced by:  nrgtgp  18183  nlmtlm  18204
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-icc 10663  df-fz 10783  df-fzo 10871  df-seq 11047  df-hash 11338  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-plusf 14368  df-submnd 14416  df-grp 14489  df-minusg 14490  df-sbg 14491  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-abl 15092  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cn 16957  df-cnp 16958  df-tx 17257  df-hmeo 17446  df-tmd 17755  df-tgp 17756  df-xms 17885  df-ms 17886  df-tms 17887  df-nm 18105  df-ngp 18106
  Copyright terms: Public domain W3C validator