MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngtmnft Structured version   Unicode version

Theorem ngtmnft 10747
Description: An extended real is not greater than minus infinity iff they are equal. (Contributed by NM, 2-Feb-2006.)
Assertion
Ref Expression
ngtmnft  |-  ( A  e.  RR*  ->  ( A  =  -oo  <->  -.  -oo  <  A ) )

Proof of Theorem ngtmnft
StepHypRef Expression
1 mnfxr 10706 . . . 4  |-  -oo  e.  RR*
2 xrltnr 10712 . . . 4  |-  (  -oo  e.  RR*  ->  -.  -oo  <  -oo )
31, 2ax-mp 8 . . 3  |-  -.  -oo  <  -oo
4 breq2 4208 . . 3  |-  ( A  =  -oo  ->  (  -oo  <  A  <->  -oo  <  -oo ) )
53, 4mtbiri 295 . 2  |-  ( A  =  -oo  ->  -.  -oo 
<  A )
6 mnfle 10721 . . . . 5  |-  ( A  e.  RR*  ->  -oo  <_  A )
7 xrleloe 10729 . . . . . 6  |-  ( ( 
-oo  e.  RR*  /\  A  e.  RR* )  ->  (  -oo  <_  A  <->  (  -oo  <  A  \/  -oo  =  A ) ) )
81, 7mpan 652 . . . . 5  |-  ( A  e.  RR*  ->  (  -oo  <_  A  <->  (  -oo  <  A  \/  -oo  =  A
) ) )
96, 8mpbid 202 . . . 4  |-  ( A  e.  RR*  ->  (  -oo  <  A  \/  -oo  =  A ) )
109ord 367 . . 3  |-  ( A  e.  RR*  ->  ( -. 
-oo  <  A  ->  -oo  =  A ) )
11 eqcom 2437 . . 3  |-  (  -oo  =  A  <->  A  =  -oo )
1210, 11syl6ib 218 . 2  |-  ( A  e.  RR*  ->  ( -. 
-oo  <  A  ->  A  =  -oo ) )
135, 12impbid2 196 1  |-  ( A  e.  RR*  ->  ( A  =  -oo  <->  -.  -oo  <  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    = wceq 1652    e. wcel 1725   class class class wbr 4204    -oocmnf 9110   RR*cxr 9111    < clt 9112    <_ cle 9113
This theorem is referenced by:  xrrebnd  10748  ge0nemnf  10753  xlt2add  10831  xrsdsreclblem  16736  xblpnfps  18417  xblpnf  18418  xlemnf  24109  supxrnemnf  24119  itg2addnclem  26246
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-pre-lttri 9056  ax-pre-lttrn 9057
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118
  Copyright terms: Public domain W3C validator