MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  niabn Unicode version

Theorem niabn 917
Description: Miscellaneous inference relating falsehoods. (Contributed by NM, 31-Mar-1994.)
Hypothesis
Ref Expression
niabn.1  |-  ph
Assertion
Ref Expression
niabn  |-  ( -. 
ps  ->  ( ( ch 
/\  ps )  <->  -.  ph )
)

Proof of Theorem niabn
StepHypRef Expression
1 simpr 447 . 2  |-  ( ( ch  /\  ps )  ->  ps )
2 niabn.1 . . 3  |-  ph
32pm2.24i 136 . 2  |-  ( -. 
ph  ->  ps )
41, 3pm5.21ni 341 1  |-  ( -. 
ps  ->  ( ( ch 
/\  ps )  <->  -.  ph )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358
This theorem is referenced by:  ninba  927
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360
  Copyright terms: Public domain W3C validator