MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nic-isw1 Unicode version

Theorem nic-isw1 1435
Description: Inference version of nic-swap 1434. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
nic-isw1.1  |-  ( th 
-/\  ph )
Assertion
Ref Expression
nic-isw1  |-  ( ph  -/\ 
th )

Proof of Theorem nic-isw1
StepHypRef Expression
1 nic-isw1.1 . 2  |-  ( th 
-/\  ph )
2 nic-swap 1434 . 2  |-  ( ( th  -/\  ph )  -/\  ( ( ph  -/\  th )  -/\  ( ph  -/\  th )
) )
31, 2nic-mp 1426 1  |-  ( ph  -/\ 
th )
Colors of variables: wff set class
Syntax hints:    -/\ wnan 1287
This theorem is referenced by:  nic-isw2  1436  nic-iimp1  1437  nic-iimp2  1438  nic-idel  1439  nic-ich  1440  nic-luk2  1447
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-nan 1288
  Copyright terms: Public domain W3C validator