MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nic-luk2 Unicode version

Theorem nic-luk2 1447
Description: Proof of luk-2 1411 from nic-ax 1428 and nic-mp 1426. (Contributed by Jeff Hoffman, 18-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nic-luk2  |-  ( ( -.  ph  ->  ph )  ->  ph )

Proof of Theorem nic-luk2
StepHypRef Expression
1 nic-dfim 1424 . . . . 5  |-  ( ( ( -.  ph  -/\  ( ph  -/\  ph ) )  -/\  ( -.  ph  ->  ph )
)  -/\  ( (
( -.  ph  -/\  ( ph  -/\  ph ) )  -/\  ( -.  ph  -/\  ( ph  -/\  ph ) ) ) 
-/\  ( ( -. 
ph  ->  ph )  -/\  ( -.  ph  ->  ph ) ) ) )
21nic-bi2 1444 . . . 4  |-  ( ( -.  ph  ->  ph )  -/\  ( ( -.  ph  -/\  ( ph  -/\  ph )
)  -/\  ( -.  ph 
-/\  ( ph  -/\  ph )
) ) )
3 nic-dfneg 1425 . . . . . 6  |-  ( ( ( ph  -/\  ph )  -/\  -.  ph )  -/\  ( ( ( ph  -/\  ph )  -/\  ( ph  -/\  ph ) )  -/\  ( -.  ph  -/\  -.  ph )
) )
4 nic-id 1433 . . . . . 6  |-  ( (
ph  -/\  ph )  -/\  (
( ph  -/\  ph )  -/\  ( ph  -/\  ph )
) )
53, 4nic-iimp1 1437 . . . . 5  |-  ( (
ph  -/\  ph )  -/\  (
( ph  -/\  ph )  -/\  -.  ph ) )
65nic-isw2 1436 . . . 4  |-  ( (
ph  -/\  ph )  -/\  ( -.  ph  -/\  ( ph  -/\  ph ) ) )
72, 6nic-iimp1 1437 . . 3  |-  ( (
ph  -/\  ph )  -/\  ( -.  ph  ->  ph ) )
87nic-isw1 1435 . 2  |-  ( ( -.  ph  ->  ph )  -/\  ( ph  -/\  ph )
)
9 nic-dfim 1424 . . 3  |-  ( ( ( ( -.  ph  ->  ph )  -/\  ( ph  -/\  ph ) )  -/\  ( ( -.  ph  ->  ph )  ->  ph )
)  -/\  ( (
( ( -.  ph  ->  ph )  -/\  ( ph  -/\  ph ) )  -/\  ( ( -.  ph  ->  ph )  -/\  ( ph  -/\  ph ) ) ) 
-/\  ( ( ( -.  ph  ->  ph )  ->  ph )  -/\  (
( -.  ph  ->  ph )  ->  ph ) ) ) )
109nic-bi1 1443 . 2  |-  ( ( ( -.  ph  ->  ph )  -/\  ( ph  -/\  ph ) )  -/\  (
( ( -.  ph  ->  ph )  ->  ph )  -/\  ( ( -.  ph  ->  ph )  ->  ph )
) )
118, 10nic-mp 1426 1  |-  ( ( -.  ph  ->  ph )  ->  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    -/\ wnan 1287
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288
  Copyright terms: Public domain W3C validator