MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlly2i Unicode version

Theorem nlly2i 17496
Description: Eliminate the neighborhood symbol from nllyi 17495. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
nlly2i  |-  ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  ->  E. s  e.  ~P  U E. u  e.  J  ( P  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) )
Distinct variable groups:    u, s, A    P, s, u    U, s, u    J, s, u

Proof of Theorem nlly2i
StepHypRef Expression
1 nllyi 17495 . 2  |-  ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  ->  E. s  e.  ( ( nei `  J
) `  { P } ) ( s 
C_  U  /\  ( Jt  s )  e.  A
) )
2 simprrl 741 . . . . . 6  |-  ( ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  /\  ( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) ) )  ->  s  C_  U
)
3 vex 2923 . . . . . . 7  |-  s  e. 
_V
43elpw 3769 . . . . . 6  |-  ( s  e.  ~P U  <->  s  C_  U )
52, 4sylibr 204 . . . . 5  |-  ( ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  /\  ( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) ) )  ->  s  e.  ~P U )
6 simpl1 960 . . . . . . . 8  |-  ( ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  /\  ( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) ) )  ->  J  e. 𝑛Locally  A )
7 nllytop 17493 . . . . . . . 8  |-  ( J  e. 𝑛Locally  A  ->  J  e.  Top )
86, 7syl 16 . . . . . . 7  |-  ( ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  /\  ( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) ) )  ->  J  e.  Top )
9 simprl 733 . . . . . . 7  |-  ( ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  /\  ( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) ) )  ->  s  e.  ( ( nei `  J
) `  { P } ) )
10 neii2 17131 . . . . . . 7  |-  ( ( J  e.  Top  /\  s  e.  ( ( nei `  J ) `  { P } ) )  ->  E. u  e.  J  ( { P }  C_  u  /\  u  C_  s
) )
118, 9, 10syl2anc 643 . . . . . 6  |-  ( ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  /\  ( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) ) )  ->  E. u  e.  J  ( { P }  C_  u  /\  u  C_  s
) )
12 simprl 733 . . . . . . . . . 10  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U
)  /\  ( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) ) )  /\  ( { P }  C_  u  /\  u  C_  s ) )  ->  { P }  C_  u
)
13 simpll3 998 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U
)  /\  ( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) ) )  /\  ( { P }  C_  u  /\  u  C_  s ) )  ->  P  e.  U )
14 snssg 3896 . . . . . . . . . . 11  |-  ( P  e.  U  ->  ( P  e.  u  <->  { P }  C_  u ) )
1513, 14syl 16 . . . . . . . . . 10  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U
)  /\  ( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) ) )  /\  ( { P }  C_  u  /\  u  C_  s ) )  -> 
( P  e.  u  <->  { P }  C_  u
) )
1612, 15mpbird 224 . . . . . . . . 9  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U
)  /\  ( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) ) )  /\  ( { P }  C_  u  /\  u  C_  s ) )  ->  P  e.  u )
17 simprr 734 . . . . . . . . 9  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U
)  /\  ( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) ) )  /\  ( { P }  C_  u  /\  u  C_  s ) )  ->  u  C_  s )
18 simprrr 742 . . . . . . . . . 10  |-  ( ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  /\  ( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) ) )  ->  ( Jt  s )  e.  A )
1918adantr 452 . . . . . . . . 9  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U
)  /\  ( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) ) )  /\  ( { P }  C_  u  /\  u  C_  s ) )  -> 
( Jt  s )  e.  A )
2016, 17, 193jca 1134 . . . . . . . 8  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U
)  /\  ( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) ) )  /\  ( { P }  C_  u  /\  u  C_  s ) )  -> 
( P  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) )
2120ex 424 . . . . . . 7  |-  ( ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  /\  ( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) ) )  ->  ( ( { P }  C_  u  /\  u  C_  s )  ->  ( P  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )
2221reximdv 2781 . . . . . 6  |-  ( ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  /\  ( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) ) )  ->  ( E. u  e.  J  ( { P }  C_  u  /\  u  C_  s )  ->  E. u  e.  J  ( P  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )
2311, 22mpd 15 . . . . 5  |-  ( ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  /\  ( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) ) )  ->  E. u  e.  J  ( P  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) )
245, 23jca 519 . . . 4  |-  ( ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  /\  ( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) ) )  ->  ( s  e. 
~P U  /\  E. u  e.  J  ( P  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A
) ) )
2524ex 424 . . 3  |-  ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  ->  (
( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) )  -> 
( s  e.  ~P U  /\  E. u  e.  J  ( P  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) ) )
2625reximdv2 2779 . 2  |-  ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  ->  ( E. s  e.  (
( nei `  J
) `  { P } ) ( s 
C_  U  /\  ( Jt  s )  e.  A
)  ->  E. s  e.  ~P  U E. u  e.  J  ( P  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )
271, 26mpd 15 1  |-  ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  ->  E. s  e.  ~P  U E. u  e.  J  ( P  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    e. wcel 1721   E.wrex 2671    C_ wss 3284   ~Pcpw 3763   {csn 3778   ` cfv 5417  (class class class)co 6044   ↾t crest 13607   Topctop 16917   neicnei 17120  𝑛Locally cnlly 17485
This theorem is referenced by:  restnlly  17502  nllyrest  17506  nllyidm  17509  cldllycmp  17515  txnlly  17626  txkgen  17641  xkococnlem  17648  conpcon  24879  cvmliftmolem2  24926  cvmlift3lem8  24970
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-id 4462  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-top 16922  df-nei 17121  df-nlly 17487
  Copyright terms: Public domain W3C validator