MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nllyi Unicode version

Theorem nllyi 17201
Description: The property of an n-locally  A topological space. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
nllyi  |-  ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  ->  E. u  e.  ( ( nei `  J
) `  { P } ) ( u 
C_  U  /\  ( Jt  u )  e.  A
) )
Distinct variable groups:    u, A    u, P    u, U    u, J

Proof of Theorem nllyi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnlly 17195 . . . . 5  |-  ( J  e. 𝑛Locally  A  <->  ( J  e. 
Top  /\  A. x  e.  J  A. y  e.  x  E. u  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P x ) ( Jt  u )  e.  A
) )
21simprbi 450 . . . 4  |-  ( J  e. 𝑛Locally  A  ->  A. x  e.  J  A. y  e.  x  E. u  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P x ) ( Jt  u )  e.  A
)
3 pweq 3628 . . . . . . . 8  |-  ( x  =  U  ->  ~P x  =  ~P U
)
43ineq2d 3370 . . . . . . 7  |-  ( x  =  U  ->  (
( ( nei `  J
) `  { y } )  i^i  ~P x )  =  ( ( ( nei `  J
) `  { y } )  i^i  ~P U ) )
54rexeqdv 2743 . . . . . 6  |-  ( x  =  U  ->  ( E. u  e.  (
( ( nei `  J
) `  { y } )  i^i  ~P x ) ( Jt  u )  e.  A  <->  E. u  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P U ) ( Jt  u )  e.  A
) )
65raleqbi1dv 2744 . . . . 5  |-  ( x  =  U  ->  ( A. y  e.  x  E. u  e.  (
( ( nei `  J
) `  { y } )  i^i  ~P x ) ( Jt  u )  e.  A  <->  A. y  e.  U  E. u  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P U ) ( Jt  u )  e.  A
) )
76rspccva 2883 . . . 4  |-  ( ( A. x  e.  J  A. y  e.  x  E. u  e.  (
( ( nei `  J
) `  { y } )  i^i  ~P x ) ( Jt  u )  e.  A  /\  U  e.  J )  ->  A. y  e.  U  E. u  e.  (
( ( nei `  J
) `  { y } )  i^i  ~P U ) ( Jt  u )  e.  A )
82, 7sylan 457 . . 3  |-  ( ( J  e. 𝑛Locally  A  /\  U  e.  J )  ->  A. y  e.  U  E. u  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P U ) ( Jt  u )  e.  A
)
9 elin 3358 . . . . . . . 8  |-  ( u  e.  ( ( ( nei `  J ) `
 { y } )  i^i  ~P U
)  <->  ( u  e.  ( ( nei `  J
) `  { y } )  /\  u  e.  ~P U ) )
10 sneq 3651 . . . . . . . . . . 11  |-  ( y  =  P  ->  { y }  =  { P } )
1110fveq2d 5529 . . . . . . . . . 10  |-  ( y  =  P  ->  (
( nei `  J
) `  { y } )  =  ( ( nei `  J
) `  { P } ) )
1211eleq2d 2350 . . . . . . . . 9  |-  ( y  =  P  ->  (
u  e.  ( ( nei `  J ) `
 { y } )  <->  u  e.  (
( nei `  J
) `  { P } ) ) )
13 vex 2791 . . . . . . . . . . 11  |-  u  e. 
_V
1413elpw 3631 . . . . . . . . . 10  |-  ( u  e.  ~P U  <->  u  C_  U
)
1514a1i 10 . . . . . . . . 9  |-  ( y  =  P  ->  (
u  e.  ~P U  <->  u 
C_  U ) )
1612, 15anbi12d 691 . . . . . . . 8  |-  ( y  =  P  ->  (
( u  e.  ( ( nei `  J
) `  { y } )  /\  u  e.  ~P U )  <->  ( u  e.  ( ( nei `  J
) `  { P } )  /\  u  C_  U ) ) )
179, 16syl5bb 248 . . . . . . 7  |-  ( y  =  P  ->  (
u  e.  ( ( ( nei `  J
) `  { y } )  i^i  ~P U )  <->  ( u  e.  ( ( nei `  J
) `  { P } )  /\  u  C_  U ) ) )
1817anbi1d 685 . . . . . 6  |-  ( y  =  P  ->  (
( u  e.  ( ( ( nei `  J
) `  { y } )  i^i  ~P U )  /\  ( Jt  u )  e.  A
)  <->  ( ( u  e.  ( ( nei `  J ) `  { P } )  /\  u  C_  U )  /\  ( Jt  u )  e.  A
) ) )
19 anass 630 . . . . . 6  |-  ( ( ( u  e.  ( ( nei `  J
) `  { P } )  /\  u  C_  U )  /\  ( Jt  u )  e.  A
)  <->  ( u  e.  ( ( nei `  J
) `  { P } )  /\  (
u  C_  U  /\  ( Jt  u )  e.  A
) ) )
2018, 19syl6bb 252 . . . . 5  |-  ( y  =  P  ->  (
( u  e.  ( ( ( nei `  J
) `  { y } )  i^i  ~P U )  /\  ( Jt  u )  e.  A
)  <->  ( u  e.  ( ( nei `  J
) `  { P } )  /\  (
u  C_  U  /\  ( Jt  u )  e.  A
) ) ) )
2120rexbidv2 2566 . . . 4  |-  ( y  =  P  ->  ( E. u  e.  (
( ( nei `  J
) `  { y } )  i^i  ~P U ) ( Jt  u )  e.  A  <->  E. u  e.  ( ( nei `  J
) `  { P } ) ( u 
C_  U  /\  ( Jt  u )  e.  A
) ) )
2221rspccva 2883 . . 3  |-  ( ( A. y  e.  U  E. u  e.  (
( ( nei `  J
) `  { y } )  i^i  ~P U ) ( Jt  u )  e.  A  /\  P  e.  U )  ->  E. u  e.  ( ( nei `  J
) `  { P } ) ( u 
C_  U  /\  ( Jt  u )  e.  A
) )
238, 22sylan 457 . 2  |-  ( ( ( J  e. 𝑛Locally  A  /\  U  e.  J )  /\  P  e.  U
)  ->  E. u  e.  ( ( nei `  J
) `  { P } ) ( u 
C_  U  /\  ( Jt  u )  e.  A
) )
24233impa 1146 1  |-  ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  ->  E. u  e.  ( ( nei `  J
) `  { P } ) ( u 
C_  U  /\  ( Jt  u )  e.  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    i^i cin 3151    C_ wss 3152   ~Pcpw 3625   {csn 3640   ` cfv 5255  (class class class)co 5858   ↾t crest 13325   Topctop 16631   neicnei 16834  𝑛Locally cnlly 17191
This theorem is referenced by:  nlly2i  17202  llycmpkgen  17247
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-iota 5219  df-fv 5263  df-ov 5861  df-nlly 17193
  Copyright terms: Public domain W3C validator