MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nllyidm Structured version   Unicode version

Theorem nllyidm 17557
Description: Idempotence of the "n-locally" predicate, i.e. being "n-locally  A " is a local property. (Use loclly 17555 to show 𝑛Locally 𝑛Locally  A  = 𝑛Locally  A.) (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
nllyidm  |- Locally 𝑛Locally  A  = 𝑛Locally  A

Proof of Theorem nllyidm
Dummy variables  j  u  v  x  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 llytop 17540 . . . 4  |-  ( j  e. Locally 𝑛Locally  A  ->  j  e.  Top )
2 llyi 17542 . . . . . . 7  |-  ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  ->  E. u  e.  j  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) )
3 simprr3 1008 . . . . . . . . 9  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  (
jt  u )  e. 𝑛Locally  A )
4 simprl 734 . . . . . . . . . 10  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  u  e.  j )
5 ssid 3369 . . . . . . . . . . 11  |-  u  C_  u
65a1i 11 . . . . . . . . . 10  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  u  C_  u )
7 simpl1 961 . . . . . . . . . . . 12  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  j  e. Locally 𝑛Locally  A )
87, 1syl 16 . . . . . . . . . . 11  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  j  e.  Top )
9 restopn2 17246 . . . . . . . . . . 11  |-  ( ( j  e.  Top  /\  u  e.  j )  ->  ( u  e.  ( jt  u )  <->  ( u  e.  j  /\  u  C_  u ) ) )
108, 4, 9syl2anc 644 . . . . . . . . . 10  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  (
u  e.  ( jt  u )  <->  ( u  e.  j  /\  u  C_  u ) ) )
114, 6, 10mpbir2and 890 . . . . . . . . 9  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  u  e.  ( jt  u ) )
12 simprr2 1007 . . . . . . . . 9  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  y  e.  u )
13 nlly2i 17544 . . . . . . . . 9  |-  ( ( ( jt  u )  e. 𝑛Locally  A  /\  u  e.  ( jt  u
)  /\  y  e.  u )  ->  E. v  e.  ~P  u E. z  e.  ( jt  u ) ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) )
143, 11, 12, 13syl3anc 1185 . . . . . . . 8  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  E. v  e.  ~P  u E. z  e.  ( jt  u ) ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) )
15 restopn2 17246 . . . . . . . . . . . . . 14  |-  ( ( j  e.  Top  /\  u  e.  j )  ->  ( z  e.  ( jt  u )  <->  ( z  e.  j  /\  z  C_  u ) ) )
168, 4, 15syl2anc 644 . . . . . . . . . . . . 13  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  (
z  e.  ( jt  u )  <->  ( z  e.  j  /\  z  C_  u ) ) )
1716adantr 453 . . . . . . . . . . . 12  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  v  e.  ~P u )  -> 
( z  e.  ( jt  u )  <->  ( z  e.  j  /\  z  C_  u ) ) )
188adantr 453 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  j  e.  Top )
19 simpr2l 1017 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  z  e.  j )
20 simpr31 1048 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  y  e.  z )
21 opnneip 17188 . . . . . . . . . . . . . . . . . 18  |-  ( ( j  e.  Top  /\  z  e.  j  /\  y  e.  z )  ->  z  e.  ( ( nei `  j ) `
 { y } ) )
2218, 19, 20, 21syl3anc 1185 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  z  e.  ( ( nei `  j
) `  { y } ) )
23 simpr32 1049 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  z  C_  v
)
24 simpr1 964 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  e.  ~P u )
2524elpwid 3810 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  C_  u
)
264adantr 453 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  u  e.  j )
27 elssuni 4045 . . . . . . . . . . . . . . . . . . 19  |-  ( u  e.  j  ->  u  C_ 
U. j )
2826, 27syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  u  C_  U. j
)
2925, 28sstrd 3360 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  C_  U. j
)
30 eqid 2438 . . . . . . . . . . . . . . . . . 18  |-  U. j  =  U. j
3130ssnei2 17185 . . . . . . . . . . . . . . . . 17  |-  ( ( ( j  e.  Top  /\  z  e.  ( ( nei `  j ) `
 { y } ) )  /\  (
z  C_  v  /\  v  C_  U. j ) )  ->  v  e.  ( ( nei `  j
) `  { y } ) )
3218, 22, 23, 29, 31syl22anc 1186 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  e.  ( ( nei `  j
) `  { y } ) )
33 simprr1 1006 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  u  C_  x )
3433adantr 453 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  u  C_  x
)
3525, 34sstrd 3360 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  C_  x
)
36 vex 2961 . . . . . . . . . . . . . . . . . 18  |-  v  e. 
_V
3736elpw 3807 . . . . . . . . . . . . . . . . 17  |-  ( v  e.  ~P x  <->  v  C_  x )
3835, 37sylibr 205 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  e.  ~P x )
39 elin 3532 . . . . . . . . . . . . . . . 16  |-  ( v  e.  ( ( ( nei `  j ) `
 { y } )  i^i  ~P x
)  <->  ( v  e.  ( ( nei `  j
) `  { y } )  /\  v  e.  ~P x ) )
4032, 38, 39sylanbrc 647 . . . . . . . . . . . . . . 15  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  e.  ( ( ( nei `  j
) `  { y } )  i^i  ~P x ) )
41 restabs 17234 . . . . . . . . . . . . . . . . 17  |-  ( ( j  e.  Top  /\  v  C_  u  /\  u  e.  j )  ->  (
( jt  u )t  v )  =  ( jt  v ) )
4218, 25, 26, 41syl3anc 1185 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  ( ( jt  u )t  v )  =  ( jt  v ) )
43 simpr33 1050 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  ( ( jt  u )t  v )  e.  A
)
4442, 43eqeltrrd 2513 . . . . . . . . . . . . . . 15  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  ( jt  v )  e.  A )
4540, 44jca 520 . . . . . . . . . . . . . 14  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  ( v  e.  ( ( ( nei `  j ) `  {
y } )  i^i 
~P x )  /\  ( jt  v )  e.  A ) )
46453exp2 1172 . . . . . . . . . . . . 13  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  (
v  e.  ~P u  ->  ( ( z  e.  j  /\  z  C_  u )  ->  (
( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A )  ->  ( v  e.  ( ( ( nei `  j ) `  {
y } )  i^i 
~P x )  /\  ( jt  v )  e.  A ) ) ) ) )
4746imp 420 . . . . . . . . . . . 12  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  v  e.  ~P u )  -> 
( ( z  e.  j  /\  z  C_  u )  ->  (
( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A )  ->  ( v  e.  ( ( ( nei `  j ) `  {
y } )  i^i 
~P x )  /\  ( jt  v )  e.  A ) ) ) )
4817, 47sylbid 208 . . . . . . . . . . 11  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  v  e.  ~P u )  -> 
( z  e.  ( jt  u )  ->  (
( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A )  ->  ( v  e.  ( ( ( nei `  j ) `  {
y } )  i^i 
~P x )  /\  ( jt  v )  e.  A ) ) ) )
4948rexlimdv 2831 . . . . . . . . . 10  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  v  e.  ~P u )  -> 
( E. z  e.  ( jt  u ) ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A )  ->  (
v  e.  ( ( ( nei `  j
) `  { y } )  i^i  ~P x )  /\  (
jt  v )  e.  A
) ) )
5049expimpd 588 . . . . . . . . 9  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  (
( v  e.  ~P u  /\  E. z  e.  ( jt  u ) ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) )  -> 
( v  e.  ( ( ( nei `  j
) `  { y } )  i^i  ~P x )  /\  (
jt  v )  e.  A
) ) )
5150reximdv2 2817 . . . . . . . 8  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  ( E. v  e.  ~P  u E. z  e.  ( jt  u ) ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A )  ->  E. v  e.  ( ( ( nei `  j ) `  {
y } )  i^i 
~P x ) ( jt  v )  e.  A
) )
5214, 51mpd 15 . . . . . . 7  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  E. v  e.  ( ( ( nei `  j ) `  {
y } )  i^i 
~P x ) ( jt  v )  e.  A
)
532, 52rexlimddv 2836 . . . . . 6  |-  ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  ->  E. v  e.  ( ( ( nei `  j ) `  {
y } )  i^i 
~P x ) ( jt  v )  e.  A
)
54533expb 1155 . . . . 5  |-  ( ( j  e. Locally 𝑛Locally  A  /\  (
x  e.  j  /\  y  e.  x )
)  ->  E. v  e.  ( ( ( nei `  j ) `  {
y } )  i^i 
~P x ) ( jt  v )  e.  A
)
5554ralrimivva 2800 . . . 4  |-  ( j  e. Locally 𝑛Locally  A  ->  A. x  e.  j 
A. y  e.  x  E. v  e.  (
( ( nei `  j
) `  { y } )  i^i  ~P x ) ( jt  v )  e.  A )
56 isnlly 17537 . . . 4  |-  ( j  e. 𝑛Locally  A  <->  ( j  e. 
Top  /\  A. x  e.  j  A. y  e.  x  E. v  e.  ( ( ( nei `  j ) `  {
y } )  i^i 
~P x ) ( jt  v )  e.  A
) )
571, 55, 56sylanbrc 647 . . 3  |-  ( j  e. Locally 𝑛Locally  A  ->  j  e. 𝑛Locally  A )
5857ssriv 3354 . 2  |- Locally 𝑛Locally  A  C_ 𝑛Locally  A
59 nllyrest 17554 . . . . 5  |-  ( ( j  e. 𝑛Locally  A  /\  x  e.  j )  ->  (
jt  x )  e. 𝑛Locally  A )
6059adantl 454 . . . 4  |-  ( (  T.  /\  ( j  e. 𝑛Locally  A  /\  x  e.  j ) )  -> 
( jt  x )  e. 𝑛Locally  A )
61 nllytop 17541 . . . . . 6  |-  ( j  e. 𝑛Locally  A  ->  j  e.  Top )
6261ssriv 3354 . . . . 5  |- 𝑛Locally  A  C_  Top
6362a1i 11 . . . 4  |-  (  T. 
-> 𝑛Locally  A  C_  Top )
6460, 63restlly 17551 . . 3  |-  (  T. 
-> 𝑛Locally  A  C_ Locally 𝑛Locally  A )
6564trud 1333 . 2  |- 𝑛Locally  A  C_ Locally 𝑛Locally  A
6658, 65eqssi 3366 1  |- Locally 𝑛Locally  A  = 𝑛Locally  A
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    T. wtru 1326    = wceq 1653    e. wcel 1726   A.wral 2707   E.wrex 2708    i^i cin 3321    C_ wss 3322   ~Pcpw 3801   {csn 3816   U.cuni 4017   ` cfv 5457  (class class class)co 6084   ↾t crest 13653   Topctop 16963   neicnei 17166  Locally clly 17532  𝑛Locally cnlly 17533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-recs 6636  df-rdg 6671  df-oadd 6731  df-er 6908  df-en 7113  df-fin 7116  df-fi 7419  df-rest 13655  df-topgen 13672  df-top 16968  df-bases 16970  df-topon 16971  df-nei 17167  df-lly 17534  df-nlly 17535
  Copyright terms: Public domain W3C validator