MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmmul0or Unicode version

Theorem nlmmul0or 18296
Description: If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 6-Dec-2007.) (Revised by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
nlmmul0or.v  |-  V  =  ( Base `  W
)
nlmmul0or.s  |-  .x.  =  ( .s `  W )
nlmmul0or.z  |-  .0.  =  ( 0g `  W )
nlmmul0or.f  |-  F  =  (Scalar `  W )
nlmmul0or.k  |-  K  =  ( Base `  F
)
nlmmul0or.o  |-  O  =  ( 0g `  F
)
Assertion
Ref Expression
nlmmul0or  |-  ( ( W  e. NrmMod  /\  A  e.  K  /\  B  e.  V )  ->  (
( A  .x.  B
)  =  .0.  <->  ( A  =  O  \/  B  =  .0.  ) ) )

Proof of Theorem nlmmul0or
StepHypRef Expression
1 nlmmul0or.f . . . . . . 7  |-  F  =  (Scalar `  W )
21nlmngp2 18293 . . . . . 6  |-  ( W  e. NrmMod  ->  F  e. NrmGrp )
323ad2ant1 976 . . . . 5  |-  ( ( W  e. NrmMod  /\  A  e.  K  /\  B  e.  V )  ->  F  e. NrmGrp )
4 simp2 956 . . . . 5  |-  ( ( W  e. NrmMod  /\  A  e.  K  /\  B  e.  V )  ->  A  e.  K )
5 nlmmul0or.k . . . . . 6  |-  K  =  ( Base `  F
)
6 eqid 2358 . . . . . 6  |-  ( norm `  F )  =  (
norm `  F )
75, 6nmcl 18239 . . . . 5  |-  ( ( F  e. NrmGrp  /\  A  e.  K )  ->  (
( norm `  F ) `  A )  e.  RR )
83, 4, 7syl2anc 642 . . . 4  |-  ( ( W  e. NrmMod  /\  A  e.  K  /\  B  e.  V )  ->  (
( norm `  F ) `  A )  e.  RR )
98recnd 8951 . . 3  |-  ( ( W  e. NrmMod  /\  A  e.  K  /\  B  e.  V )  ->  (
( norm `  F ) `  A )  e.  CC )
10 nlmngp 18290 . . . . . 6  |-  ( W  e. NrmMod  ->  W  e. NrmGrp )
11103ad2ant1 976 . . . . 5  |-  ( ( W  e. NrmMod  /\  A  e.  K  /\  B  e.  V )  ->  W  e. NrmGrp )
12 simp3 957 . . . . 5  |-  ( ( W  e. NrmMod  /\  A  e.  K  /\  B  e.  V )  ->  B  e.  V )
13 nlmmul0or.v . . . . . 6  |-  V  =  ( Base `  W
)
14 eqid 2358 . . . . . 6  |-  ( norm `  W )  =  (
norm `  W )
1513, 14nmcl 18239 . . . . 5  |-  ( ( W  e. NrmGrp  /\  B  e.  V )  ->  (
( norm `  W ) `  B )  e.  RR )
1611, 12, 15syl2anc 642 . . . 4  |-  ( ( W  e. NrmMod  /\  A  e.  K  /\  B  e.  V )  ->  (
( norm `  W ) `  B )  e.  RR )
1716recnd 8951 . . 3  |-  ( ( W  e. NrmMod  /\  A  e.  K  /\  B  e.  V )  ->  (
( norm `  W ) `  B )  e.  CC )
189, 17mul0ord 9508 . 2  |-  ( ( W  e. NrmMod  /\  A  e.  K  /\  B  e.  V )  ->  (
( ( ( norm `  F ) `  A
)  x.  ( (
norm `  W ) `  B ) )  =  0  <->  ( ( (
norm `  F ) `  A )  =  0  \/  ( ( norm `  W ) `  B
)  =  0 ) ) )
19 nlmmul0or.s . . . . 5  |-  .x.  =  ( .s `  W )
2013, 14, 19, 1, 5, 6nmvs 18289 . . . 4  |-  ( ( W  e. NrmMod  /\  A  e.  K  /\  B  e.  V )  ->  (
( norm `  W ) `  ( A  .x.  B
) )  =  ( ( ( norm `  F
) `  A )  x.  ( ( norm `  W
) `  B )
) )
2120eqeq1d 2366 . . 3  |-  ( ( W  e. NrmMod  /\  A  e.  K  /\  B  e.  V )  ->  (
( ( norm `  W
) `  ( A  .x.  B ) )  =  0  <->  ( ( (
norm `  F ) `  A )  x.  (
( norm `  W ) `  B ) )  =  0 ) )
22 nlmlmod 18291 . . . . 5  |-  ( W  e. NrmMod  ->  W  e.  LMod )
2313, 1, 19, 5lmodvscl 15743 . . . . 5  |-  ( ( W  e.  LMod  /\  A  e.  K  /\  B  e.  V )  ->  ( A  .x.  B )  e.  V )
2422, 23syl3an1 1215 . . . 4  |-  ( ( W  e. NrmMod  /\  A  e.  K  /\  B  e.  V )  ->  ( A  .x.  B )  e.  V )
25 nlmmul0or.z . . . . 5  |-  .0.  =  ( 0g `  W )
2613, 14, 25nmeq0 18241 . . . 4  |-  ( ( W  e. NrmGrp  /\  ( A  .x.  B )  e.  V )  ->  (
( ( norm `  W
) `  ( A  .x.  B ) )  =  0  <->  ( A  .x.  B )  =  .0.  ) )
2711, 24, 26syl2anc 642 . . 3  |-  ( ( W  e. NrmMod  /\  A  e.  K  /\  B  e.  V )  ->  (
( ( norm `  W
) `  ( A  .x.  B ) )  =  0  <->  ( A  .x.  B )  =  .0.  ) )
2821, 27bitr3d 246 . 2  |-  ( ( W  e. NrmMod  /\  A  e.  K  /\  B  e.  V )  ->  (
( ( ( norm `  F ) `  A
)  x.  ( (
norm `  W ) `  B ) )  =  0  <->  ( A  .x.  B )  =  .0.  ) )
29 nlmmul0or.o . . . . 5  |-  O  =  ( 0g `  F
)
305, 6, 29nmeq0 18241 . . . 4  |-  ( ( F  e. NrmGrp  /\  A  e.  K )  ->  (
( ( norm `  F
) `  A )  =  0  <->  A  =  O ) )
313, 4, 30syl2anc 642 . . 3  |-  ( ( W  e. NrmMod  /\  A  e.  K  /\  B  e.  V )  ->  (
( ( norm `  F
) `  A )  =  0  <->  A  =  O ) )
3213, 14, 25nmeq0 18241 . . . 4  |-  ( ( W  e. NrmGrp  /\  B  e.  V )  ->  (
( ( norm `  W
) `  B )  =  0  <->  B  =  .0.  ) )
3311, 12, 32syl2anc 642 . . 3  |-  ( ( W  e. NrmMod  /\  A  e.  K  /\  B  e.  V )  ->  (
( ( norm `  W
) `  B )  =  0  <->  B  =  .0.  ) )
3431, 33orbi12d 690 . 2  |-  ( ( W  e. NrmMod  /\  A  e.  K  /\  B  e.  V )  ->  (
( ( ( norm `  F ) `  A
)  =  0  \/  ( ( norm `  W
) `  B )  =  0 )  <->  ( A  =  O  \/  B  =  .0.  ) ) )
3518, 28, 343bitr3d 274 1  |-  ( ( W  e. NrmMod  /\  A  e.  K  /\  B  e.  V )  ->  (
( A  .x.  B
)  =  .0.  <->  ( A  =  O  \/  B  =  .0.  ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ w3a 934    = wceq 1642    e. wcel 1710   ` cfv 5337  (class class class)co 5945   RRcr 8826   0cc0 8827    x. cmul 8832   Basecbs 13245  Scalarcsca 13308   .scvsca 13309   0gc0g 13499   LModclmod 15726   normcnm 18201  NrmGrpcngp 18202  NrmModcnlm 18205
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904  ax-pre-sup 8905
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-riota 6391  df-recs 6475  df-rdg 6510  df-er 6747  df-map 6862  df-en 6952  df-dom 6953  df-sdom 6954  df-sup 7284  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-div 9514  df-nn 9837  df-2 9894  df-n0 10058  df-z 10117  df-uz 10323  df-q 10409  df-rp 10447  df-xneg 10544  df-xadd 10545  df-xmul 10546  df-topgen 13443  df-0g 13503  df-mnd 14466  df-grp 14588  df-lmod 15728  df-xmet 16475  df-met 16476  df-bl 16477  df-mopn 16478  df-top 16742  df-bases 16744  df-topon 16745  df-topsp 16746  df-xms 17987  df-ms 17988  df-nm 18207  df-ngp 18208  df-nrg 18210  df-nlm 18211
  Copyright terms: Public domain W3C validator