MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmngp2 Structured version   Unicode version

Theorem nlmngp2 18716
Description: The scalar component of a left module is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypothesis
Ref Expression
nlmnrg.1  |-  F  =  (Scalar `  W )
Assertion
Ref Expression
nlmngp2  |-  ( W  e. NrmMod  ->  F  e. NrmGrp )

Proof of Theorem nlmngp2
StepHypRef Expression
1 nlmnrg.1 . . 3  |-  F  =  (Scalar `  W )
21nlmnrg 18715 . 2  |-  ( W  e. NrmMod  ->  F  e. NrmRing )
3 nrgngp 18698 . 2  |-  ( F  e. NrmRing  ->  F  e. NrmGrp )
42, 3syl 16 1  |-  ( W  e. NrmMod  ->  F  e. NrmGrp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1652    e. wcel 1725   ` cfv 5454  Scalarcsca 13532  NrmGrpcngp 18625  NrmRingcnrg 18627  NrmModcnlm 18628
This theorem is referenced by:  nlmdsdir  18718  nlmmul0or  18719  nlmvscnlem2  18721  nlmvscnlem1  18722  nlmvscn  18723
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-nul 4338
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-iota 5418  df-fv 5462  df-ov 6084  df-nrg 18633  df-nlm 18634
  Copyright terms: Public domain W3C validator