MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmvscnlem1 Unicode version

Theorem nlmvscnlem1 18593
Description: Lemma for nlmvscn 18594. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
nlmvscn.f  |-  F  =  (Scalar `  W )
nlmvscn.v  |-  V  =  ( Base `  W
)
nlmvscn.k  |-  K  =  ( Base `  F
)
nlmvscn.d  |-  D  =  ( dist `  W
)
nlmvscn.e  |-  E  =  ( dist `  F
)
nlmvscn.n  |-  N  =  ( norm `  W
)
nlmvscn.a  |-  A  =  ( norm `  F
)
nlmvscn.s  |-  .x.  =  ( .s `  W )
nlmvscn.t  |-  T  =  ( ( R  / 
2 )  /  (
( A `  B
)  +  1 ) )
nlmvscn.u  |-  U  =  ( ( R  / 
2 )  /  (
( N `  X
)  +  T ) )
nlmvscn.w  |-  ( ph  ->  W  e. NrmMod )
nlmvscn.r  |-  ( ph  ->  R  e.  RR+ )
nlmvscn.b  |-  ( ph  ->  B  e.  K )
nlmvscn.x  |-  ( ph  ->  X  e.  V )
Assertion
Ref Expression
nlmvscnlem1  |-  ( ph  ->  E. r  e.  RR+  A. x  e.  K  A. y  e.  V  (
( ( B E x )  <  r  /\  ( X D y )  <  r )  ->  ( ( B 
.x.  X ) D ( x  .x.  y
) )  <  R
) )
Distinct variable groups:    B, r    D, r    E, r    x, y,
ph    x, r, y, T    U, r, x, y    F, r, x, y    K, r, y    R, r    V, r    W, r, x, y    .x. , r, x, y    X, r
Allowed substitution hints:    ph( r)    A( x, y, r)    B( x, y)    D( x, y)    R( x, y)    E( x, y)    K( x)    N( x, y, r)    V( x, y)    X( x, y)

Proof of Theorem nlmvscnlem1
StepHypRef Expression
1 nlmvscn.t . . . 4  |-  T  =  ( ( R  / 
2 )  /  (
( A `  B
)  +  1 ) )
2 nlmvscn.r . . . . . 6  |-  ( ph  ->  R  e.  RR+ )
32rphalfcld 10592 . . . . 5  |-  ( ph  ->  ( R  /  2
)  e.  RR+ )
4 nlmvscn.w . . . . . . . 8  |-  ( ph  ->  W  e. NrmMod )
5 nlmvscn.f . . . . . . . . 9  |-  F  =  (Scalar `  W )
65nlmngp2 18587 . . . . . . . 8  |-  ( W  e. NrmMod  ->  F  e. NrmGrp )
74, 6syl 16 . . . . . . 7  |-  ( ph  ->  F  e. NrmGrp )
8 nlmvscn.b . . . . . . 7  |-  ( ph  ->  B  e.  K )
9 nlmvscn.k . . . . . . . 8  |-  K  =  ( Base `  F
)
10 nlmvscn.a . . . . . . . 8  |-  A  =  ( norm `  F
)
119, 10nmcl 18533 . . . . . . 7  |-  ( ( F  e. NrmGrp  /\  B  e.  K )  ->  ( A `  B )  e.  RR )
127, 8, 11syl2anc 643 . . . . . 6  |-  ( ph  ->  ( A `  B
)  e.  RR )
139, 10nmge0 18534 . . . . . . 7  |-  ( ( F  e. NrmGrp  /\  B  e.  K )  ->  0  <_  ( A `  B
) )
147, 8, 13syl2anc 643 . . . . . 6  |-  ( ph  ->  0  <_  ( A `  B ) )
1512, 14ge0p1rpd 10606 . . . . 5  |-  ( ph  ->  ( ( A `  B )  +  1 )  e.  RR+ )
163, 15rpdivcld 10597 . . . 4  |-  ( ph  ->  ( ( R  / 
2 )  /  (
( A `  B
)  +  1 ) )  e.  RR+ )
171, 16syl5eqel 2471 . . 3  |-  ( ph  ->  T  e.  RR+ )
18 nlmvscn.u . . . 4  |-  U  =  ( ( R  / 
2 )  /  (
( N `  X
)  +  T ) )
19 nlmngp 18584 . . . . . . . . 9  |-  ( W  e. NrmMod  ->  W  e. NrmGrp )
204, 19syl 16 . . . . . . . 8  |-  ( ph  ->  W  e. NrmGrp )
21 nlmvscn.x . . . . . . . 8  |-  ( ph  ->  X  e.  V )
22 nlmvscn.v . . . . . . . . 9  |-  V  =  ( Base `  W
)
23 nlmvscn.n . . . . . . . . 9  |-  N  =  ( norm `  W
)
2422, 23nmcl 18533 . . . . . . . 8  |-  ( ( W  e. NrmGrp  /\  X  e.  V )  ->  ( N `  X )  e.  RR )
2520, 21, 24syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( N `  X
)  e.  RR )
2617rpred 10580 . . . . . . 7  |-  ( ph  ->  T  e.  RR )
2725, 26readdcld 9048 . . . . . 6  |-  ( ph  ->  ( ( N `  X )  +  T
)  e.  RR )
28 0re 9024 . . . . . . . 8  |-  0  e.  RR
2928a1i 11 . . . . . . 7  |-  ( ph  ->  0  e.  RR )
3022, 23nmge0 18534 . . . . . . . 8  |-  ( ( W  e. NrmGrp  /\  X  e.  V )  ->  0  <_  ( N `  X
) )
3120, 21, 30syl2anc 643 . . . . . . 7  |-  ( ph  ->  0  <_  ( N `  X ) )
3225, 17ltaddrpd 10609 . . . . . . 7  |-  ( ph  ->  ( N `  X
)  <  ( ( N `  X )  +  T ) )
3329, 25, 27, 31, 32lelttrd 9160 . . . . . 6  |-  ( ph  ->  0  <  ( ( N `  X )  +  T ) )
3427, 33elrpd 10578 . . . . 5  |-  ( ph  ->  ( ( N `  X )  +  T
)  e.  RR+ )
353, 34rpdivcld 10597 . . . 4  |-  ( ph  ->  ( ( R  / 
2 )  /  (
( N `  X
)  +  T ) )  e.  RR+ )
3618, 35syl5eqel 2471 . . 3  |-  ( ph  ->  U  e.  RR+ )
37 ifcl 3718 . . 3  |-  ( ( T  e.  RR+  /\  U  e.  RR+ )  ->  if ( T  <_  U ,  T ,  U )  e.  RR+ )
3817, 36, 37syl2anc 643 . 2  |-  ( ph  ->  if ( T  <_  U ,  T ,  U )  e.  RR+ )
39 nlmvscn.d . . . . 5  |-  D  =  ( dist `  W
)
40 nlmvscn.e . . . . 5  |-  E  =  ( dist `  F
)
41 nlmvscn.s . . . . 5  |-  .x.  =  ( .s `  W )
424adantr 452 . . . . 5  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  ->  W  e. NrmMod )
432adantr 452 . . . . 5  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  ->  R  e.  RR+ )
448adantr 452 . . . . 5  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  ->  B  e.  K )
4521adantr 452 . . . . 5  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  ->  X  e.  V )
46 simprll 739 . . . . 5  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  ->  x  e.  K )
47 simprlr 740 . . . . 5  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  -> 
y  e.  V )
487adantr 452 . . . . . . . 8  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  ->  F  e. NrmGrp )
49 ngpms 18518 . . . . . . . 8  |-  ( F  e. NrmGrp  ->  F  e.  MetSp )
5048, 49syl 16 . . . . . . 7  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  ->  F  e.  MetSp )
519, 40mscl 18381 . . . . . . 7  |-  ( ( F  e.  MetSp  /\  B  e.  K  /\  x  e.  K )  ->  ( B E x )  e.  RR )
5250, 44, 46, 51syl3anc 1184 . . . . . 6  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  -> 
( B E x )  e.  RR )
5338adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  ->  if ( T  <_  U ,  T ,  U )  e.  RR+ )
5453rpred 10580 . . . . . 6  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  ->  if ( T  <_  U ,  T ,  U )  e.  RR )
5536rpred 10580 . . . . . . 7  |-  ( ph  ->  U  e.  RR )
5655adantr 452 . . . . . 6  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  ->  U  e.  RR )
57 simprrl 741 . . . . . 6  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  -> 
( B E x )  <  if ( T  <_  U ,  T ,  U )
)
5826adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  ->  T  e.  RR )
59 min2 10709 . . . . . . 7  |-  ( ( T  e.  RR  /\  U  e.  RR )  ->  if ( T  <_  U ,  T ,  U )  <_  U
)
6058, 56, 59syl2anc 643 . . . . . 6  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  ->  if ( T  <_  U ,  T ,  U )  <_  U )
6152, 54, 56, 57, 60ltletrd 9162 . . . . 5  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  -> 
( B E x )  <  U )
62 ngpms 18518 . . . . . . . . 9  |-  ( W  e. NrmGrp  ->  W  e.  MetSp )
6320, 62syl 16 . . . . . . . 8  |-  ( ph  ->  W  e.  MetSp )
6463adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  ->  W  e.  MetSp )
6522, 39mscl 18381 . . . . . . 7  |-  ( ( W  e.  MetSp  /\  X  e.  V  /\  y  e.  V )  ->  ( X D y )  e.  RR )
6664, 45, 47, 65syl3anc 1184 . . . . . 6  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  -> 
( X D y )  e.  RR )
67 simprrr 742 . . . . . 6  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  -> 
( X D y )  <  if ( T  <_  U ,  T ,  U )
)
68 min1 10708 . . . . . . 7  |-  ( ( T  e.  RR  /\  U  e.  RR )  ->  if ( T  <_  U ,  T ,  U )  <_  T
)
6958, 56, 68syl2anc 643 . . . . . 6  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  ->  if ( T  <_  U ,  T ,  U )  <_  T )
7066, 54, 58, 67, 69ltletrd 9162 . . . . 5  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  -> 
( X D y )  <  T )
715, 22, 9, 39, 40, 23, 10, 41, 1, 18, 42, 43, 44, 45, 46, 47, 61, 70nlmvscnlem2 18592 . . . 4  |-  ( (
ph  /\  ( (
x  e.  K  /\  y  e.  V )  /\  ( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )  -> 
( ( B  .x.  X ) D ( x  .x.  y ) )  <  R )
7271expr 599 . . 3  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  V ) )  -> 
( ( ( B E x )  < 
if ( T  <_  U ,  T ,  U )  /\  ( X D y )  < 
if ( T  <_  U ,  T ,  U ) )  -> 
( ( B  .x.  X ) D ( x  .x.  y ) )  <  R ) )
7372ralrimivva 2741 . 2  |-  ( ph  ->  A. x  e.  K  A. y  e.  V  ( ( ( B E x )  < 
if ( T  <_  U ,  T ,  U )  /\  ( X D y )  < 
if ( T  <_  U ,  T ,  U ) )  -> 
( ( B  .x.  X ) D ( x  .x.  y ) )  <  R ) )
74 breq2 4157 . . . . . 6  |-  ( r  =  if ( T  <_  U ,  T ,  U )  ->  (
( B E x )  <  r  <->  ( B E x )  < 
if ( T  <_  U ,  T ,  U ) ) )
75 breq2 4157 . . . . . 6  |-  ( r  =  if ( T  <_  U ,  T ,  U )  ->  (
( X D y )  <  r  <->  ( X D y )  < 
if ( T  <_  U ,  T ,  U ) ) )
7674, 75anbi12d 692 . . . . 5  |-  ( r  =  if ( T  <_  U ,  T ,  U )  ->  (
( ( B E x )  <  r  /\  ( X D y )  <  r )  <-> 
( ( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
) ) )
7776imbi1d 309 . . . 4  |-  ( r  =  if ( T  <_  U ,  T ,  U )  ->  (
( ( ( B E x )  < 
r  /\  ( X D y )  < 
r )  ->  (
( B  .x.  X
) D ( x 
.x.  y ) )  <  R )  <->  ( (
( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
)  ->  ( ( B  .x.  X ) D ( x  .x.  y
) )  <  R
) ) )
78772ralbidv 2691 . . 3  |-  ( r  =  if ( T  <_  U ,  T ,  U )  ->  ( A. x  e.  K  A. y  e.  V  ( ( ( B E x )  < 
r  /\  ( X D y )  < 
r )  ->  (
( B  .x.  X
) D ( x 
.x.  y ) )  <  R )  <->  A. x  e.  K  A. y  e.  V  ( (
( B E x )  <  if ( T  <_  U ,  T ,  U )  /\  ( X D y )  <  if ( T  <_  U ,  T ,  U )
)  ->  ( ( B  .x.  X ) D ( x  .x.  y
) )  <  R
) ) )
7978rspcev 2995 . 2  |-  ( ( if ( T  <_  U ,  T ,  U )  e.  RR+  /\ 
A. x  e.  K  A. y  e.  V  ( ( ( B E x )  < 
if ( T  <_  U ,  T ,  U )  /\  ( X D y )  < 
if ( T  <_  U ,  T ,  U ) )  -> 
( ( B  .x.  X ) D ( x  .x.  y ) )  <  R ) )  ->  E. r  e.  RR+  A. x  e.  K  A. y  e.  V  ( ( ( B E x )  <  r  /\  ( X D y )  < 
r )  ->  (
( B  .x.  X
) D ( x 
.x.  y ) )  <  R ) )
8038, 73, 79syl2anc 643 1  |-  ( ph  ->  E. r  e.  RR+  A. x  e.  K  A. y  e.  V  (
( ( B E x )  <  r  /\  ( X D y )  <  r )  ->  ( ( B 
.x.  X ) D ( x  .x.  y
) )  <  R
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2649   E.wrex 2650   ifcif 3682   class class class wbr 4153   ` cfv 5394  (class class class)co 6020   RRcr 8922   0cc0 8923   1c1 8924    + caddc 8926    < clt 9053    <_ cle 9054    / cdiv 9609   2c2 9981   RR+crp 10544   Basecbs 13396  Scalarcsca 13459   .scvsca 13460   distcds 13465   MetSpcmt 18257   normcnm 18495  NrmGrpcngp 18496  NrmModcnlm 18499
This theorem is referenced by:  nlmvscn  18594
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-oadd 6664  df-er 6841  df-map 6956  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-sup 7381  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-3 9991  df-4 9992  df-5 9993  df-6 9994  df-7 9995  df-8 9996  df-9 9997  df-10 9998  df-n0 10154  df-z 10215  df-dec 10315  df-uz 10421  df-q 10507  df-rp 10545  df-xneg 10642  df-xadd 10643  df-xmul 10644  df-fz 10976  df-seq 11251  df-exp 11310  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967  df-abs 11968  df-struct 13398  df-ndx 13399  df-slot 13400  df-base 13401  df-sets 13402  df-plusg 13469  df-mulr 13470  df-tset 13475  df-ple 13476  df-ds 13478  df-topgen 13594  df-xrs 13653  df-0g 13654  df-mnd 14617  df-grp 14739  df-minusg 14740  df-sbg 14741  df-mgp 15576  df-rng 15590  df-ur 15592  df-lmod 15879  df-xmet 16619  df-met 16620  df-bl 16621  df-mopn 16622  df-top 16886  df-bases 16888  df-topon 16889  df-topsp 16890  df-xms 18259  df-ms 18260  df-nm 18501  df-ngp 18502  df-nrg 18504  df-nlm 18505
  Copyright terms: Public domain W3C validator