MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmvscnlem2 Unicode version

Theorem nlmvscnlem2 18292
Description: Lemma for nlmvscn 18294. Compare this proof with the similar elementary proof mulcn2 12159 for continuity of multiplication on  CC. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
nlmvscn.f  |-  F  =  (Scalar `  W )
nlmvscn.v  |-  V  =  ( Base `  W
)
nlmvscn.k  |-  K  =  ( Base `  F
)
nlmvscn.d  |-  D  =  ( dist `  W
)
nlmvscn.e  |-  E  =  ( dist `  F
)
nlmvscn.n  |-  N  =  ( norm `  W
)
nlmvscn.a  |-  A  =  ( norm `  F
)
nlmvscn.s  |-  .x.  =  ( .s `  W )
nlmvscn.t  |-  T  =  ( ( R  / 
2 )  /  (
( A `  B
)  +  1 ) )
nlmvscn.u  |-  U  =  ( ( R  / 
2 )  /  (
( N `  X
)  +  T ) )
nlmvscn.w  |-  ( ph  ->  W  e. NrmMod )
nlmvscn.r  |-  ( ph  ->  R  e.  RR+ )
nlmvscn.b  |-  ( ph  ->  B  e.  K )
nlmvscn.x  |-  ( ph  ->  X  e.  V )
nlmvscn.c  |-  ( ph  ->  C  e.  K )
nlmvscn.y  |-  ( ph  ->  Y  e.  V )
nlmvscn.1  |-  ( ph  ->  ( B E C )  <  U )
nlmvscn.2  |-  ( ph  ->  ( X D Y )  <  T )
Assertion
Ref Expression
nlmvscnlem2  |-  ( ph  ->  ( ( B  .x.  X ) D ( C  .x.  Y ) )  <  R )

Proof of Theorem nlmvscnlem2
StepHypRef Expression
1 nlmvscn.w . . . . 5  |-  ( ph  ->  W  e. NrmMod )
2 nlmngp 18284 . . . . 5  |-  ( W  e. NrmMod  ->  W  e. NrmGrp )
31, 2syl 15 . . . 4  |-  ( ph  ->  W  e. NrmGrp )
4 ngpms 18218 . . . 4  |-  ( W  e. NrmGrp  ->  W  e.  MetSp )
53, 4syl 15 . . 3  |-  ( ph  ->  W  e.  MetSp )
6 nlmlmod 18285 . . . . 5  |-  ( W  e. NrmMod  ->  W  e.  LMod )
71, 6syl 15 . . . 4  |-  ( ph  ->  W  e.  LMod )
8 nlmvscn.b . . . 4  |-  ( ph  ->  B  e.  K )
9 nlmvscn.x . . . 4  |-  ( ph  ->  X  e.  V )
10 nlmvscn.v . . . . 5  |-  V  =  ( Base `  W
)
11 nlmvscn.f . . . . 5  |-  F  =  (Scalar `  W )
12 nlmvscn.s . . . . 5  |-  .x.  =  ( .s `  W )
13 nlmvscn.k . . . . 5  |-  K  =  ( Base `  F
)
1410, 11, 12, 13lmodvscl 15737 . . . 4  |-  ( ( W  e.  LMod  /\  B  e.  K  /\  X  e.  V )  ->  ( B  .x.  X )  e.  V )
157, 8, 9, 14syl3anc 1182 . . 3  |-  ( ph  ->  ( B  .x.  X
)  e.  V )
16 nlmvscn.c . . . 4  |-  ( ph  ->  C  e.  K )
17 nlmvscn.y . . . 4  |-  ( ph  ->  Y  e.  V )
1810, 11, 12, 13lmodvscl 15737 . . . 4  |-  ( ( W  e.  LMod  /\  C  e.  K  /\  Y  e.  V )  ->  ( C  .x.  Y )  e.  V )
197, 16, 17, 18syl3anc 1182 . . 3  |-  ( ph  ->  ( C  .x.  Y
)  e.  V )
20 nlmvscn.d . . . 4  |-  D  =  ( dist `  W
)
2110, 20mscl 18103 . . 3  |-  ( ( W  e.  MetSp  /\  ( B  .x.  X )  e.  V  /\  ( C 
.x.  Y )  e.  V )  ->  (
( B  .x.  X
) D ( C 
.x.  Y ) )  e.  RR )
225, 15, 19, 21syl3anc 1182 . 2  |-  ( ph  ->  ( ( B  .x.  X ) D ( C  .x.  Y ) )  e.  RR )
2310, 11, 12, 13lmodvscl 15737 . . . . 5  |-  ( ( W  e.  LMod  /\  B  e.  K  /\  Y  e.  V )  ->  ( B  .x.  Y )  e.  V )
247, 8, 17, 23syl3anc 1182 . . . 4  |-  ( ph  ->  ( B  .x.  Y
)  e.  V )
2510, 20mscl 18103 . . . 4  |-  ( ( W  e.  MetSp  /\  ( B  .x.  X )  e.  V  /\  ( B 
.x.  Y )  e.  V )  ->  (
( B  .x.  X
) D ( B 
.x.  Y ) )  e.  RR )
265, 15, 24, 25syl3anc 1182 . . 3  |-  ( ph  ->  ( ( B  .x.  X ) D ( B  .x.  Y ) )  e.  RR )
2710, 20mscl 18103 . . . 4  |-  ( ( W  e.  MetSp  /\  ( B  .x.  Y )  e.  V  /\  ( C 
.x.  Y )  e.  V )  ->  (
( B  .x.  Y
) D ( C 
.x.  Y ) )  e.  RR )
285, 24, 19, 27syl3anc 1182 . . 3  |-  ( ph  ->  ( ( B  .x.  Y ) D ( C  .x.  Y ) )  e.  RR )
2926, 28readdcld 8949 . 2  |-  ( ph  ->  ( ( ( B 
.x.  X ) D ( B  .x.  Y
) )  +  ( ( B  .x.  Y
) D ( C 
.x.  Y ) ) )  e.  RR )
30 nlmvscn.r . . 3  |-  ( ph  ->  R  e.  RR+ )
3130rpred 10479 . 2  |-  ( ph  ->  R  e.  RR )
3210, 20mstri 18111 . . 3  |-  ( ( W  e.  MetSp  /\  (
( B  .x.  X
)  e.  V  /\  ( C  .x.  Y )  e.  V  /\  ( B  .x.  Y )  e.  V ) )  -> 
( ( B  .x.  X ) D ( C  .x.  Y ) )  <_  ( (
( B  .x.  X
) D ( B 
.x.  Y ) )  +  ( ( B 
.x.  Y ) D ( C  .x.  Y
) ) ) )
335, 15, 19, 24, 32syl13anc 1184 . 2  |-  ( ph  ->  ( ( B  .x.  X ) D ( C  .x.  Y ) )  <_  ( (
( B  .x.  X
) D ( B 
.x.  Y ) )  +  ( ( B 
.x.  Y ) D ( C  .x.  Y
) ) ) )
3411nlmngp2 18287 . . . . . . . . 9  |-  ( W  e. NrmMod  ->  F  e. NrmGrp )
351, 34syl 15 . . . . . . . 8  |-  ( ph  ->  F  e. NrmGrp )
36 nlmvscn.a . . . . . . . . 9  |-  A  =  ( norm `  F
)
3713, 36nmcl 18233 . . . . . . . 8  |-  ( ( F  e. NrmGrp  /\  B  e.  K )  ->  ( A `  B )  e.  RR )
3835, 8, 37syl2anc 642 . . . . . . 7  |-  ( ph  ->  ( A `  B
)  e.  RR )
3913, 36nmge0 18234 . . . . . . . 8  |-  ( ( F  e. NrmGrp  /\  B  e.  K )  ->  0  <_  ( A `  B
) )
4035, 8, 39syl2anc 642 . . . . . . 7  |-  ( ph  ->  0  <_  ( A `  B ) )
4138, 40ge0p1rpd 10505 . . . . . 6  |-  ( ph  ->  ( ( A `  B )  +  1 )  e.  RR+ )
4241rpred 10479 . . . . 5  |-  ( ph  ->  ( ( A `  B )  +  1 )  e.  RR )
4310, 20mscl 18103 . . . . . 6  |-  ( ( W  e.  MetSp  /\  X  e.  V  /\  Y  e.  V )  ->  ( X D Y )  e.  RR )
445, 9, 17, 43syl3anc 1182 . . . . 5  |-  ( ph  ->  ( X D Y )  e.  RR )
4542, 44remulcld 8950 . . . 4  |-  ( ph  ->  ( ( ( A `
 B )  +  1 )  x.  ( X D Y ) )  e.  RR )
4631rehalfcld 10047 . . . 4  |-  ( ph  ->  ( R  /  2
)  e.  RR )
4710, 12, 11, 13, 20, 36nlmdsdi 18288 . . . . . 6  |-  ( ( W  e. NrmMod  /\  ( B  e.  K  /\  X  e.  V  /\  Y  e.  V )
)  ->  ( ( A `  B )  x.  ( X D Y ) )  =  ( ( B  .x.  X
) D ( B 
.x.  Y ) ) )
481, 8, 9, 17, 47syl13anc 1184 . . . . 5  |-  ( ph  ->  ( ( A `  B )  x.  ( X D Y ) )  =  ( ( B 
.x.  X ) D ( B  .x.  Y
) ) )
49 msxms 18096 . . . . . . . 8  |-  ( W  e.  MetSp  ->  W  e.  *
MetSp )
505, 49syl 15 . . . . . . 7  |-  ( ph  ->  W  e.  * MetSp )
5110, 20xmsge0 18105 . . . . . . 7  |-  ( ( W  e.  * MetSp  /\  X  e.  V  /\  Y  e.  V )  ->  0  <_  ( X D Y ) )
5250, 9, 17, 51syl3anc 1182 . . . . . 6  |-  ( ph  ->  0  <_  ( X D Y ) )
5338lep1d 9775 . . . . . 6  |-  ( ph  ->  ( A `  B
)  <_  ( ( A `  B )  +  1 ) )
5438, 42, 44, 52, 53lemul1ad 9783 . . . . 5  |-  ( ph  ->  ( ( A `  B )  x.  ( X D Y ) )  <_  ( ( ( A `  B )  +  1 )  x.  ( X D Y ) ) )
5548, 54eqbrtrrd 4124 . . . 4  |-  ( ph  ->  ( ( B  .x.  X ) D ( B  .x.  Y ) )  <_  ( (
( A `  B
)  +  1 )  x.  ( X D Y ) ) )
56 nlmvscn.2 . . . . . 6  |-  ( ph  ->  ( X D Y )  <  T )
57 nlmvscn.t . . . . . 6  |-  T  =  ( ( R  / 
2 )  /  (
( A `  B
)  +  1 ) )
5856, 57syl6breq 4141 . . . . 5  |-  ( ph  ->  ( X D Y )  <  ( ( R  /  2 )  /  ( ( A `
 B )  +  1 ) ) )
5944, 46, 41ltmuldiv2d 10523 . . . . 5  |-  ( ph  ->  ( ( ( ( A `  B )  +  1 )  x.  ( X D Y ) )  <  ( R  /  2 )  <->  ( X D Y )  <  (
( R  /  2
)  /  ( ( A `  B )  +  1 ) ) ) )
6058, 59mpbird 223 . . . 4  |-  ( ph  ->  ( ( ( A `
 B )  +  1 )  x.  ( X D Y ) )  <  ( R  / 
2 ) )
6126, 45, 46, 55, 60lelttrd 9061 . . 3  |-  ( ph  ->  ( ( B  .x.  X ) D ( B  .x.  Y ) )  <  ( R  /  2 ) )
62 ngpms 18218 . . . . . . 7  |-  ( F  e. NrmGrp  ->  F  e.  MetSp )
6335, 62syl 15 . . . . . 6  |-  ( ph  ->  F  e.  MetSp )
64 nlmvscn.e . . . . . . 7  |-  E  =  ( dist `  F
)
6513, 64mscl 18103 . . . . . 6  |-  ( ( F  e.  MetSp  /\  B  e.  K  /\  C  e.  K )  ->  ( B E C )  e.  RR )
6663, 8, 16, 65syl3anc 1182 . . . . 5  |-  ( ph  ->  ( B E C )  e.  RR )
67 nlmvscn.n . . . . . . . 8  |-  N  =  ( norm `  W
)
6810, 67nmcl 18233 . . . . . . 7  |-  ( ( W  e. NrmGrp  /\  X  e.  V )  ->  ( N `  X )  e.  RR )
693, 9, 68syl2anc 642 . . . . . 6  |-  ( ph  ->  ( N `  X
)  e.  RR )
7030rphalfcld 10491 . . . . . . . . 9  |-  ( ph  ->  ( R  /  2
)  e.  RR+ )
7170, 41rpdivcld 10496 . . . . . . . 8  |-  ( ph  ->  ( ( R  / 
2 )  /  (
( A `  B
)  +  1 ) )  e.  RR+ )
7257, 71syl5eqel 2442 . . . . . . 7  |-  ( ph  ->  T  e.  RR+ )
7372rpred 10479 . . . . . 6  |-  ( ph  ->  T  e.  RR )
7469, 73readdcld 8949 . . . . 5  |-  ( ph  ->  ( ( N `  X )  +  T
)  e.  RR )
7566, 74remulcld 8950 . . . 4  |-  ( ph  ->  ( ( B E C )  x.  (
( N `  X
)  +  T ) )  e.  RR )
7610, 12, 11, 13, 20, 67, 64nlmdsdir 18289 . . . . . 6  |-  ( ( W  e. NrmMod  /\  ( B  e.  K  /\  C  e.  K  /\  Y  e.  V )
)  ->  ( ( B E C )  x.  ( N `  Y
) )  =  ( ( B  .x.  Y
) D ( C 
.x.  Y ) ) )
771, 8, 16, 17, 76syl13anc 1184 . . . . 5  |-  ( ph  ->  ( ( B E C )  x.  ( N `  Y )
)  =  ( ( B  .x.  Y ) D ( C  .x.  Y ) ) )
7810, 67nmcl 18233 . . . . . . 7  |-  ( ( W  e. NrmGrp  /\  Y  e.  V )  ->  ( N `  Y )  e.  RR )
793, 17, 78syl2anc 642 . . . . . 6  |-  ( ph  ->  ( N `  Y
)  e.  RR )
80 msxms 18096 . . . . . . . 8  |-  ( F  e.  MetSp  ->  F  e.  *
MetSp )
8163, 80syl 15 . . . . . . 7  |-  ( ph  ->  F  e.  * MetSp )
8213, 64xmsge0 18105 . . . . . . 7  |-  ( ( F  e.  * MetSp  /\  B  e.  K  /\  C  e.  K )  ->  0  <_  ( B E C ) )
8381, 8, 16, 82syl3anc 1182 . . . . . 6  |-  ( ph  ->  0  <_  ( B E C ) )
8479, 69resubcld 9298 . . . . . . . 8  |-  ( ph  ->  ( ( N `  Y )  -  ( N `  X )
)  e.  RR )
85 eqid 2358 . . . . . . . . . . 11  |-  ( -g `  W )  =  (
-g `  W )
8610, 67, 85nm2dif 18242 . . . . . . . . . 10  |-  ( ( W  e. NrmGrp  /\  Y  e.  V  /\  X  e.  V )  ->  (
( N `  Y
)  -  ( N `
 X ) )  <_  ( N `  ( Y ( -g `  W
) X ) ) )
873, 17, 9, 86syl3anc 1182 . . . . . . . . 9  |-  ( ph  ->  ( ( N `  Y )  -  ( N `  X )
)  <_  ( N `  ( Y ( -g `  W ) X ) ) )
8867, 10, 85, 20ngpdsr 18222 . . . . . . . . . 10  |-  ( ( W  e. NrmGrp  /\  X  e.  V  /\  Y  e.  V )  ->  ( X D Y )  =  ( N `  ( Y ( -g `  W
) X ) ) )
893, 9, 17, 88syl3anc 1182 . . . . . . . . 9  |-  ( ph  ->  ( X D Y )  =  ( N `
 ( Y (
-g `  W ) X ) ) )
9087, 89breqtrrd 4128 . . . . . . . 8  |-  ( ph  ->  ( ( N `  Y )  -  ( N `  X )
)  <_  ( X D Y ) )
9144, 73, 56ltled 9054 . . . . . . . 8  |-  ( ph  ->  ( X D Y )  <_  T )
9284, 44, 73, 90, 91letrd 9060 . . . . . . 7  |-  ( ph  ->  ( ( N `  Y )  -  ( N `  X )
)  <_  T )
9379, 69, 73lesubadd2d 9458 . . . . . . 7  |-  ( ph  ->  ( ( ( N `
 Y )  -  ( N `  X ) )  <_  T  <->  ( N `  Y )  <_  (
( N `  X
)  +  T ) ) )
9492, 93mpbid 201 . . . . . 6  |-  ( ph  ->  ( N `  Y
)  <_  ( ( N `  X )  +  T ) )
9579, 74, 66, 83, 94lemul2ad 9784 . . . . 5  |-  ( ph  ->  ( ( B E C )  x.  ( N `  Y )
)  <_  ( ( B E C )  x.  ( ( N `  X )  +  T
) ) )
9677, 95eqbrtrrd 4124 . . . 4  |-  ( ph  ->  ( ( B  .x.  Y ) D ( C  .x.  Y ) )  <_  ( ( B E C )  x.  ( ( N `  X )  +  T
) ) )
97 nlmvscn.1 . . . . . 6  |-  ( ph  ->  ( B E C )  <  U )
98 nlmvscn.u . . . . . 6  |-  U  =  ( ( R  / 
2 )  /  (
( N `  X
)  +  T ) )
9997, 98syl6breq 4141 . . . . 5  |-  ( ph  ->  ( B E C )  <  ( ( R  /  2 )  /  ( ( N `
 X )  +  T ) ) )
100 0re 8925 . . . . . . . 8  |-  0  e.  RR
101100a1i 10 . . . . . . 7  |-  ( ph  ->  0  e.  RR )
10210, 67nmge0 18234 . . . . . . . 8  |-  ( ( W  e. NrmGrp  /\  X  e.  V )  ->  0  <_  ( N `  X
) )
1033, 9, 102syl2anc 642 . . . . . . 7  |-  ( ph  ->  0  <_  ( N `  X ) )
10469, 72ltaddrpd 10508 . . . . . . 7  |-  ( ph  ->  ( N `  X
)  <  ( ( N `  X )  +  T ) )
105101, 69, 74, 103, 104lelttrd 9061 . . . . . 6  |-  ( ph  ->  0  <  ( ( N `  X )  +  T ) )
106 ltmuldiv 9713 . . . . . 6  |-  ( ( ( B E C )  e.  RR  /\  ( R  /  2
)  e.  RR  /\  ( ( ( N `
 X )  +  T )  e.  RR  /\  0  <  ( ( N `  X )  +  T ) ) )  ->  ( (
( B E C )  x.  ( ( N `  X )  +  T ) )  <  ( R  / 
2 )  <->  ( B E C )  <  (
( R  /  2
)  /  ( ( N `  X )  +  T ) ) ) )
10766, 46, 74, 105, 106syl112anc 1186 . . . . 5  |-  ( ph  ->  ( ( ( B E C )  x.  ( ( N `  X )  +  T
) )  <  ( R  /  2 )  <->  ( B E C )  <  (
( R  /  2
)  /  ( ( N `  X )  +  T ) ) ) )
10899, 107mpbird 223 . . . 4  |-  ( ph  ->  ( ( B E C )  x.  (
( N `  X
)  +  T ) )  <  ( R  /  2 ) )
10928, 75, 46, 96, 108lelttrd 9061 . . 3  |-  ( ph  ->  ( ( B  .x.  Y ) D ( C  .x.  Y ) )  <  ( R  /  2 ) )
11026, 28, 31, 61, 109lt2halvesd 10048 . 2  |-  ( ph  ->  ( ( ( B 
.x.  X ) D ( B  .x.  Y
) )  +  ( ( B  .x.  Y
) D ( C 
.x.  Y ) ) )  <  R )
11122, 29, 31, 33, 110lelttrd 9061 1  |-  ( ph  ->  ( ( B  .x.  X ) D ( C  .x.  Y ) )  <  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1642    e. wcel 1710   class class class wbr 4102   ` cfv 5334  (class class class)co 5942   RRcr 8823   0cc0 8824   1c1 8825    + caddc 8827    x. cmul 8829    < clt 8954    <_ cle 8955    - cmin 9124    / cdiv 9510   2c2 9882   RR+crp 10443   Basecbs 13239  Scalarcsca 13302   .scvsca 13303   distcds 13308   -gcsg 14458   LModclmod 15720   *
MetSpcxme 17978   MetSpcmt 17979   normcnm 18195  NrmGrpcngp 18196  NrmModcnlm 18199
This theorem is referenced by:  nlmvscnlem1  18293
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591  ax-cnex 8880  ax-resscn 8881  ax-1cn 8882  ax-icn 8883  ax-addcl 8884  ax-addrcl 8885  ax-mulcl 8886  ax-mulrcl 8887  ax-mulcom 8888  ax-addass 8889  ax-mulass 8890  ax-distr 8891  ax-i2m1 8892  ax-1ne0 8893  ax-1rid 8894  ax-rnegex 8895  ax-rrecex 8896  ax-cnre 8897  ax-pre-lttri 8898  ax-pre-lttrn 8899  ax-pre-ltadd 8900  ax-pre-mulgt0 8901  ax-pre-sup 8902
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3907  df-int 3942  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-tr 4193  df-eprel 4384  df-id 4388  df-po 4393  df-so 4394  df-fr 4431  df-we 4433  df-ord 4474  df-on 4475  df-lim 4476  df-suc 4477  df-om 4736  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-1st 6206  df-2nd 6207  df-riota 6388  df-recs 6472  df-rdg 6507  df-1o 6563  df-oadd 6567  df-er 6744  df-map 6859  df-en 6949  df-dom 6950  df-sdom 6951  df-fin 6952  df-sup 7281  df-pnf 8956  df-mnf 8957  df-xr 8958  df-ltxr 8959  df-le 8960  df-sub 9126  df-neg 9127  df-div 9511  df-nn 9834  df-2 9891  df-3 9892  df-4 9893  df-5 9894  df-6 9895  df-7 9896  df-8 9897  df-9 9898  df-10 9899  df-n0 10055  df-z 10114  df-dec 10214  df-uz 10320  df-q 10406  df-rp 10444  df-xneg 10541  df-xadd 10542  df-xmul 10543  df-fz 10872  df-seq 11136  df-exp 11195  df-cj 11674  df-re 11675  df-im 11676  df-sqr 11810  df-abs 11811  df-struct 13241  df-ndx 13242  df-slot 13243  df-base 13244  df-sets 13245  df-plusg 13312  df-mulr 13313  df-tset 13318  df-ple 13319  df-ds 13321  df-topgen 13437  df-xrs 13496  df-0g 13497  df-mnd 14460  df-grp 14582  df-minusg 14583  df-sbg 14584  df-mgp 15419  df-rng 15433  df-ur 15435  df-lmod 15722  df-xmet 16469  df-met 16470  df-bl 16471  df-mopn 16472  df-top 16736  df-bases 16738  df-topon 16739  df-topsp 16740  df-xms 17981  df-ms 17982  df-nm 18201  df-ngp 18202  df-nrg 18204  df-nlm 18205
  Copyright terms: Public domain W3C validator