MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmvscnlem2 Structured version   Unicode version

Theorem nlmvscnlem2 18726
Description: Lemma for nlmvscn 18728. Compare this proof with the similar elementary proof mulcn2 12394 for continuity of multiplication on  CC. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
nlmvscn.f  |-  F  =  (Scalar `  W )
nlmvscn.v  |-  V  =  ( Base `  W
)
nlmvscn.k  |-  K  =  ( Base `  F
)
nlmvscn.d  |-  D  =  ( dist `  W
)
nlmvscn.e  |-  E  =  ( dist `  F
)
nlmvscn.n  |-  N  =  ( norm `  W
)
nlmvscn.a  |-  A  =  ( norm `  F
)
nlmvscn.s  |-  .x.  =  ( .s `  W )
nlmvscn.t  |-  T  =  ( ( R  / 
2 )  /  (
( A `  B
)  +  1 ) )
nlmvscn.u  |-  U  =  ( ( R  / 
2 )  /  (
( N `  X
)  +  T ) )
nlmvscn.w  |-  ( ph  ->  W  e. NrmMod )
nlmvscn.r  |-  ( ph  ->  R  e.  RR+ )
nlmvscn.b  |-  ( ph  ->  B  e.  K )
nlmvscn.x  |-  ( ph  ->  X  e.  V )
nlmvscn.c  |-  ( ph  ->  C  e.  K )
nlmvscn.y  |-  ( ph  ->  Y  e.  V )
nlmvscn.1  |-  ( ph  ->  ( B E C )  <  U )
nlmvscn.2  |-  ( ph  ->  ( X D Y )  <  T )
Assertion
Ref Expression
nlmvscnlem2  |-  ( ph  ->  ( ( B  .x.  X ) D ( C  .x.  Y ) )  <  R )

Proof of Theorem nlmvscnlem2
StepHypRef Expression
1 nlmvscn.w . . . . 5  |-  ( ph  ->  W  e. NrmMod )
2 nlmngp 18718 . . . . 5  |-  ( W  e. NrmMod  ->  W  e. NrmGrp )
31, 2syl 16 . . . 4  |-  ( ph  ->  W  e. NrmGrp )
4 ngpms 18652 . . . 4  |-  ( W  e. NrmGrp  ->  W  e.  MetSp )
53, 4syl 16 . . 3  |-  ( ph  ->  W  e.  MetSp )
6 nlmlmod 18719 . . . . 5  |-  ( W  e. NrmMod  ->  W  e.  LMod )
71, 6syl 16 . . . 4  |-  ( ph  ->  W  e.  LMod )
8 nlmvscn.b . . . 4  |-  ( ph  ->  B  e.  K )
9 nlmvscn.x . . . 4  |-  ( ph  ->  X  e.  V )
10 nlmvscn.v . . . . 5  |-  V  =  ( Base `  W
)
11 nlmvscn.f . . . . 5  |-  F  =  (Scalar `  W )
12 nlmvscn.s . . . . 5  |-  .x.  =  ( .s `  W )
13 nlmvscn.k . . . . 5  |-  K  =  ( Base `  F
)
1410, 11, 12, 13lmodvscl 15972 . . . 4  |-  ( ( W  e.  LMod  /\  B  e.  K  /\  X  e.  V )  ->  ( B  .x.  X )  e.  V )
157, 8, 9, 14syl3anc 1185 . . 3  |-  ( ph  ->  ( B  .x.  X
)  e.  V )
16 nlmvscn.c . . . 4  |-  ( ph  ->  C  e.  K )
17 nlmvscn.y . . . 4  |-  ( ph  ->  Y  e.  V )
1810, 11, 12, 13lmodvscl 15972 . . . 4  |-  ( ( W  e.  LMod  /\  C  e.  K  /\  Y  e.  V )  ->  ( C  .x.  Y )  e.  V )
197, 16, 17, 18syl3anc 1185 . . 3  |-  ( ph  ->  ( C  .x.  Y
)  e.  V )
20 nlmvscn.d . . . 4  |-  D  =  ( dist `  W
)
2110, 20mscl 18496 . . 3  |-  ( ( W  e.  MetSp  /\  ( B  .x.  X )  e.  V  /\  ( C 
.x.  Y )  e.  V )  ->  (
( B  .x.  X
) D ( C 
.x.  Y ) )  e.  RR )
225, 15, 19, 21syl3anc 1185 . 2  |-  ( ph  ->  ( ( B  .x.  X ) D ( C  .x.  Y ) )  e.  RR )
2310, 11, 12, 13lmodvscl 15972 . . . . 5  |-  ( ( W  e.  LMod  /\  B  e.  K  /\  Y  e.  V )  ->  ( B  .x.  Y )  e.  V )
247, 8, 17, 23syl3anc 1185 . . . 4  |-  ( ph  ->  ( B  .x.  Y
)  e.  V )
2510, 20mscl 18496 . . . 4  |-  ( ( W  e.  MetSp  /\  ( B  .x.  X )  e.  V  /\  ( B 
.x.  Y )  e.  V )  ->  (
( B  .x.  X
) D ( B 
.x.  Y ) )  e.  RR )
265, 15, 24, 25syl3anc 1185 . . 3  |-  ( ph  ->  ( ( B  .x.  X ) D ( B  .x.  Y ) )  e.  RR )
2710, 20mscl 18496 . . . 4  |-  ( ( W  e.  MetSp  /\  ( B  .x.  Y )  e.  V  /\  ( C 
.x.  Y )  e.  V )  ->  (
( B  .x.  Y
) D ( C 
.x.  Y ) )  e.  RR )
285, 24, 19, 27syl3anc 1185 . . 3  |-  ( ph  ->  ( ( B  .x.  Y ) D ( C  .x.  Y ) )  e.  RR )
2926, 28readdcld 9120 . 2  |-  ( ph  ->  ( ( ( B 
.x.  X ) D ( B  .x.  Y
) )  +  ( ( B  .x.  Y
) D ( C 
.x.  Y ) ) )  e.  RR )
30 nlmvscn.r . . 3  |-  ( ph  ->  R  e.  RR+ )
3130rpred 10653 . 2  |-  ( ph  ->  R  e.  RR )
3210, 20mstri 18504 . . 3  |-  ( ( W  e.  MetSp  /\  (
( B  .x.  X
)  e.  V  /\  ( C  .x.  Y )  e.  V  /\  ( B  .x.  Y )  e.  V ) )  -> 
( ( B  .x.  X ) D ( C  .x.  Y ) )  <_  ( (
( B  .x.  X
) D ( B 
.x.  Y ) )  +  ( ( B 
.x.  Y ) D ( C  .x.  Y
) ) ) )
335, 15, 19, 24, 32syl13anc 1187 . 2  |-  ( ph  ->  ( ( B  .x.  X ) D ( C  .x.  Y ) )  <_  ( (
( B  .x.  X
) D ( B 
.x.  Y ) )  +  ( ( B 
.x.  Y ) D ( C  .x.  Y
) ) ) )
3411nlmngp2 18721 . . . . . . . . 9  |-  ( W  e. NrmMod  ->  F  e. NrmGrp )
351, 34syl 16 . . . . . . . 8  |-  ( ph  ->  F  e. NrmGrp )
36 nlmvscn.a . . . . . . . . 9  |-  A  =  ( norm `  F
)
3713, 36nmcl 18667 . . . . . . . 8  |-  ( ( F  e. NrmGrp  /\  B  e.  K )  ->  ( A `  B )  e.  RR )
3835, 8, 37syl2anc 644 . . . . . . 7  |-  ( ph  ->  ( A `  B
)  e.  RR )
3913, 36nmge0 18668 . . . . . . . 8  |-  ( ( F  e. NrmGrp  /\  B  e.  K )  ->  0  <_  ( A `  B
) )
4035, 8, 39syl2anc 644 . . . . . . 7  |-  ( ph  ->  0  <_  ( A `  B ) )
4138, 40ge0p1rpd 10679 . . . . . 6  |-  ( ph  ->  ( ( A `  B )  +  1 )  e.  RR+ )
4241rpred 10653 . . . . 5  |-  ( ph  ->  ( ( A `  B )  +  1 )  e.  RR )
4310, 20mscl 18496 . . . . . 6  |-  ( ( W  e.  MetSp  /\  X  e.  V  /\  Y  e.  V )  ->  ( X D Y )  e.  RR )
445, 9, 17, 43syl3anc 1185 . . . . 5  |-  ( ph  ->  ( X D Y )  e.  RR )
4542, 44remulcld 9121 . . . 4  |-  ( ph  ->  ( ( ( A `
 B )  +  1 )  x.  ( X D Y ) )  e.  RR )
4631rehalfcld 10219 . . . 4  |-  ( ph  ->  ( R  /  2
)  e.  RR )
4710, 12, 11, 13, 20, 36nlmdsdi 18722 . . . . . 6  |-  ( ( W  e. NrmMod  /\  ( B  e.  K  /\  X  e.  V  /\  Y  e.  V )
)  ->  ( ( A `  B )  x.  ( X D Y ) )  =  ( ( B  .x.  X
) D ( B 
.x.  Y ) ) )
481, 8, 9, 17, 47syl13anc 1187 . . . . 5  |-  ( ph  ->  ( ( A `  B )  x.  ( X D Y ) )  =  ( ( B 
.x.  X ) D ( B  .x.  Y
) ) )
49 msxms 18489 . . . . . . . 8  |-  ( W  e.  MetSp  ->  W  e.  *
MetSp )
505, 49syl 16 . . . . . . 7  |-  ( ph  ->  W  e.  * MetSp )
5110, 20xmsge0 18498 . . . . . . 7  |-  ( ( W  e.  * MetSp  /\  X  e.  V  /\  Y  e.  V )  ->  0  <_  ( X D Y ) )
5250, 9, 17, 51syl3anc 1185 . . . . . 6  |-  ( ph  ->  0  <_  ( X D Y ) )
5338lep1d 9947 . . . . . 6  |-  ( ph  ->  ( A `  B
)  <_  ( ( A `  B )  +  1 ) )
5438, 42, 44, 52, 53lemul1ad 9955 . . . . 5  |-  ( ph  ->  ( ( A `  B )  x.  ( X D Y ) )  <_  ( ( ( A `  B )  +  1 )  x.  ( X D Y ) ) )
5548, 54eqbrtrrd 4237 . . . 4  |-  ( ph  ->  ( ( B  .x.  X ) D ( B  .x.  Y ) )  <_  ( (
( A `  B
)  +  1 )  x.  ( X D Y ) ) )
56 nlmvscn.2 . . . . . 6  |-  ( ph  ->  ( X D Y )  <  T )
57 nlmvscn.t . . . . . 6  |-  T  =  ( ( R  / 
2 )  /  (
( A `  B
)  +  1 ) )
5856, 57syl6breq 4254 . . . . 5  |-  ( ph  ->  ( X D Y )  <  ( ( R  /  2 )  /  ( ( A `
 B )  +  1 ) ) )
5944, 46, 41ltmuldiv2d 10697 . . . . 5  |-  ( ph  ->  ( ( ( ( A `  B )  +  1 )  x.  ( X D Y ) )  <  ( R  /  2 )  <->  ( X D Y )  <  (
( R  /  2
)  /  ( ( A `  B )  +  1 ) ) ) )
6058, 59mpbird 225 . . . 4  |-  ( ph  ->  ( ( ( A `
 B )  +  1 )  x.  ( X D Y ) )  <  ( R  / 
2 ) )
6126, 45, 46, 55, 60lelttrd 9233 . . 3  |-  ( ph  ->  ( ( B  .x.  X ) D ( B  .x.  Y ) )  <  ( R  /  2 ) )
62 ngpms 18652 . . . . . . 7  |-  ( F  e. NrmGrp  ->  F  e.  MetSp )
6335, 62syl 16 . . . . . 6  |-  ( ph  ->  F  e.  MetSp )
64 nlmvscn.e . . . . . . 7  |-  E  =  ( dist `  F
)
6513, 64mscl 18496 . . . . . 6  |-  ( ( F  e.  MetSp  /\  B  e.  K  /\  C  e.  K )  ->  ( B E C )  e.  RR )
6663, 8, 16, 65syl3anc 1185 . . . . 5  |-  ( ph  ->  ( B E C )  e.  RR )
67 nlmvscn.n . . . . . . . 8  |-  N  =  ( norm `  W
)
6810, 67nmcl 18667 . . . . . . 7  |-  ( ( W  e. NrmGrp  /\  X  e.  V )  ->  ( N `  X )  e.  RR )
693, 9, 68syl2anc 644 . . . . . 6  |-  ( ph  ->  ( N `  X
)  e.  RR )
7030rphalfcld 10665 . . . . . . . . 9  |-  ( ph  ->  ( R  /  2
)  e.  RR+ )
7170, 41rpdivcld 10670 . . . . . . . 8  |-  ( ph  ->  ( ( R  / 
2 )  /  (
( A `  B
)  +  1 ) )  e.  RR+ )
7257, 71syl5eqel 2522 . . . . . . 7  |-  ( ph  ->  T  e.  RR+ )
7372rpred 10653 . . . . . 6  |-  ( ph  ->  T  e.  RR )
7469, 73readdcld 9120 . . . . 5  |-  ( ph  ->  ( ( N `  X )  +  T
)  e.  RR )
7566, 74remulcld 9121 . . . 4  |-  ( ph  ->  ( ( B E C )  x.  (
( N `  X
)  +  T ) )  e.  RR )
7610, 12, 11, 13, 20, 67, 64nlmdsdir 18723 . . . . . 6  |-  ( ( W  e. NrmMod  /\  ( B  e.  K  /\  C  e.  K  /\  Y  e.  V )
)  ->  ( ( B E C )  x.  ( N `  Y
) )  =  ( ( B  .x.  Y
) D ( C 
.x.  Y ) ) )
771, 8, 16, 17, 76syl13anc 1187 . . . . 5  |-  ( ph  ->  ( ( B E C )  x.  ( N `  Y )
)  =  ( ( B  .x.  Y ) D ( C  .x.  Y ) ) )
7810, 67nmcl 18667 . . . . . . 7  |-  ( ( W  e. NrmGrp  /\  Y  e.  V )  ->  ( N `  Y )  e.  RR )
793, 17, 78syl2anc 644 . . . . . 6  |-  ( ph  ->  ( N `  Y
)  e.  RR )
80 msxms 18489 . . . . . . . 8  |-  ( F  e.  MetSp  ->  F  e.  *
MetSp )
8163, 80syl 16 . . . . . . 7  |-  ( ph  ->  F  e.  * MetSp )
8213, 64xmsge0 18498 . . . . . . 7  |-  ( ( F  e.  * MetSp  /\  B  e.  K  /\  C  e.  K )  ->  0  <_  ( B E C ) )
8381, 8, 16, 82syl3anc 1185 . . . . . 6  |-  ( ph  ->  0  <_  ( B E C ) )
8479, 69resubcld 9470 . . . . . . . 8  |-  ( ph  ->  ( ( N `  Y )  -  ( N `  X )
)  e.  RR )
85 eqid 2438 . . . . . . . . . . 11  |-  ( -g `  W )  =  (
-g `  W )
8610, 67, 85nm2dif 18676 . . . . . . . . . 10  |-  ( ( W  e. NrmGrp  /\  Y  e.  V  /\  X  e.  V )  ->  (
( N `  Y
)  -  ( N `
 X ) )  <_  ( N `  ( Y ( -g `  W
) X ) ) )
873, 17, 9, 86syl3anc 1185 . . . . . . . . 9  |-  ( ph  ->  ( ( N `  Y )  -  ( N `  X )
)  <_  ( N `  ( Y ( -g `  W ) X ) ) )
8867, 10, 85, 20ngpdsr 18656 . . . . . . . . . 10  |-  ( ( W  e. NrmGrp  /\  X  e.  V  /\  Y  e.  V )  ->  ( X D Y )  =  ( N `  ( Y ( -g `  W
) X ) ) )
893, 9, 17, 88syl3anc 1185 . . . . . . . . 9  |-  ( ph  ->  ( X D Y )  =  ( N `
 ( Y (
-g `  W ) X ) ) )
9087, 89breqtrrd 4241 . . . . . . . 8  |-  ( ph  ->  ( ( N `  Y )  -  ( N `  X )
)  <_  ( X D Y ) )
9144, 73, 56ltled 9226 . . . . . . . 8  |-  ( ph  ->  ( X D Y )  <_  T )
9284, 44, 73, 90, 91letrd 9232 . . . . . . 7  |-  ( ph  ->  ( ( N `  Y )  -  ( N `  X )
)  <_  T )
9379, 69, 73lesubadd2d 9630 . . . . . . 7  |-  ( ph  ->  ( ( ( N `
 Y )  -  ( N `  X ) )  <_  T  <->  ( N `  Y )  <_  (
( N `  X
)  +  T ) ) )
9492, 93mpbid 203 . . . . . 6  |-  ( ph  ->  ( N `  Y
)  <_  ( ( N `  X )  +  T ) )
9579, 74, 66, 83, 94lemul2ad 9956 . . . . 5  |-  ( ph  ->  ( ( B E C )  x.  ( N `  Y )
)  <_  ( ( B E C )  x.  ( ( N `  X )  +  T
) ) )
9677, 95eqbrtrrd 4237 . . . 4  |-  ( ph  ->  ( ( B  .x.  Y ) D ( C  .x.  Y ) )  <_  ( ( B E C )  x.  ( ( N `  X )  +  T
) ) )
97 nlmvscn.1 . . . . . 6  |-  ( ph  ->  ( B E C )  <  U )
98 nlmvscn.u . . . . . 6  |-  U  =  ( ( R  / 
2 )  /  (
( N `  X
)  +  T ) )
9997, 98syl6breq 4254 . . . . 5  |-  ( ph  ->  ( B E C )  <  ( ( R  /  2 )  /  ( ( N `
 X )  +  T ) ) )
100 0re 9096 . . . . . . . 8  |-  0  e.  RR
101100a1i 11 . . . . . . 7  |-  ( ph  ->  0  e.  RR )
10210, 67nmge0 18668 . . . . . . . 8  |-  ( ( W  e. NrmGrp  /\  X  e.  V )  ->  0  <_  ( N `  X
) )
1033, 9, 102syl2anc 644 . . . . . . 7  |-  ( ph  ->  0  <_  ( N `  X ) )
10469, 72ltaddrpd 10682 . . . . . . 7  |-  ( ph  ->  ( N `  X
)  <  ( ( N `  X )  +  T ) )
105101, 69, 74, 103, 104lelttrd 9233 . . . . . 6  |-  ( ph  ->  0  <  ( ( N `  X )  +  T ) )
106 ltmuldiv 9885 . . . . . 6  |-  ( ( ( B E C )  e.  RR  /\  ( R  /  2
)  e.  RR  /\  ( ( ( N `
 X )  +  T )  e.  RR  /\  0  <  ( ( N `  X )  +  T ) ) )  ->  ( (
( B E C )  x.  ( ( N `  X )  +  T ) )  <  ( R  / 
2 )  <->  ( B E C )  <  (
( R  /  2
)  /  ( ( N `  X )  +  T ) ) ) )
10766, 46, 74, 105, 106syl112anc 1189 . . . . 5  |-  ( ph  ->  ( ( ( B E C )  x.  ( ( N `  X )  +  T
) )  <  ( R  /  2 )  <->  ( B E C )  <  (
( R  /  2
)  /  ( ( N `  X )  +  T ) ) ) )
10899, 107mpbird 225 . . . 4  |-  ( ph  ->  ( ( B E C )  x.  (
( N `  X
)  +  T ) )  <  ( R  /  2 ) )
10928, 75, 46, 96, 108lelttrd 9233 . . 3  |-  ( ph  ->  ( ( B  .x.  Y ) D ( C  .x.  Y ) )  <  ( R  /  2 ) )
11026, 28, 31, 61, 109lt2halvesd 10220 . 2  |-  ( ph  ->  ( ( ( B 
.x.  X ) D ( B  .x.  Y
) )  +  ( ( B  .x.  Y
) D ( C 
.x.  Y ) ) )  <  R )
11122, 29, 31, 33, 110lelttrd 9233 1  |-  ( ph  ->  ( ( B  .x.  X ) D ( C  .x.  Y ) )  <  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    = wceq 1653    e. wcel 1726   class class class wbr 4215   ` cfv 5457  (class class class)co 6084   RRcr 8994   0cc0 8995   1c1 8996    + caddc 8998    x. cmul 9000    < clt 9125    <_ cle 9126    - cmin 9296    / cdiv 9682   2c2 10054   RR+crp 10617   Basecbs 13474  Scalarcsca 13537   .scvsca 13538   distcds 13543   -gcsg 14693   LModclmod 15955   *
MetSpcxme 18352   MetSpcmt 18353   normcnm 18629  NrmGrpcngp 18630  NrmModcnlm 18633
This theorem is referenced by:  nlmvscnlem1  18727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-oadd 6731  df-er 6908  df-map 7023  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-sup 7449  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-4 10065  df-5 10066  df-6 10067  df-7 10068  df-8 10069  df-9 10070  df-10 10071  df-n0 10227  df-z 10288  df-dec 10388  df-uz 10494  df-q 10580  df-rp 10618  df-xneg 10715  df-xadd 10716  df-xmul 10717  df-fz 11049  df-seq 11329  df-exp 11388  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-struct 13476  df-ndx 13477  df-slot 13478  df-base 13479  df-sets 13480  df-plusg 13547  df-mulr 13548  df-tset 13553  df-ple 13554  df-ds 13556  df-topgen 13672  df-xrs 13731  df-0g 13732  df-mnd 14695  df-grp 14817  df-minusg 14818  df-sbg 14819  df-mgp 15654  df-rng 15668  df-ur 15670  df-lmod 15957  df-psmet 16699  df-xmet 16700  df-met 16701  df-bl 16702  df-mopn 16703  df-top 16968  df-bases 16970  df-topon 16971  df-topsp 16972  df-xms 18355  df-ms 18356  df-nm 18635  df-ngp 18636  df-nrg 18638  df-nlm 18639
  Copyright terms: Public domain W3C validator