HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmbdoplbi Unicode version

Theorem nmbdoplbi 22620
Description: A lower bound for the norm of a bounded linear operator. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
nmbdoplb.1  |-  T  e.  BndLinOp
Assertion
Ref Expression
nmbdoplbi  |-  ( A  e.  ~H  ->  ( normh `  ( T `  A ) )  <_ 
( ( normop `  T
)  x.  ( normh `  A ) ) )

Proof of Theorem nmbdoplbi
StepHypRef Expression
1 fveq2 5541 . . . 4  |-  ( A  =  0h  ->  ( T `  A )  =  ( T `  0h ) )
21fveq2d 5545 . . 3  |-  ( A  =  0h  ->  ( normh `  ( T `  A ) )  =  ( normh `  ( T `  0h ) ) )
3 fveq2 5541 . . . 4  |-  ( A  =  0h  ->  ( normh `  A )  =  ( normh `  0h )
)
43oveq2d 5890 . . 3  |-  ( A  =  0h  ->  (
( normop `  T )  x.  ( normh `  A )
)  =  ( (
normop `  T )  x.  ( normh `  0h )
) )
52, 4breq12d 4052 . 2  |-  ( A  =  0h  ->  (
( normh `  ( T `  A ) )  <_ 
( ( normop `  T
)  x.  ( normh `  A ) )  <->  ( normh `  ( T `  0h ) )  <_  (
( normop `  T )  x.  ( normh `  0h )
) ) )
6 nmbdoplb.1 . . . . . . . . . . . 12  |-  T  e.  BndLinOp
7 bdopln 22457 . . . . . . . . . . . 12  |-  ( T  e.  BndLinOp  ->  T  e.  LinOp )
86, 7ax-mp 8 . . . . . . . . . . 11  |-  T  e. 
LinOp
98lnopfi 22565 . . . . . . . . . 10  |-  T : ~H
--> ~H
109ffvelrni 5680 . . . . . . . . 9  |-  ( A  e.  ~H  ->  ( T `  A )  e.  ~H )
11 normcl 21720 . . . . . . . . 9  |-  ( ( T `  A )  e.  ~H  ->  ( normh `  ( T `  A ) )  e.  RR )
1210, 11syl 15 . . . . . . . 8  |-  ( A  e.  ~H  ->  ( normh `  ( T `  A ) )  e.  RR )
1312adantr 451 . . . . . . 7  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( T `  A ) )  e.  RR )
1413recnd 8877 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( T `  A ) )  e.  CC )
15 normcl 21720 . . . . . . . 8  |-  ( A  e.  ~H  ->  ( normh `  A )  e.  RR )
1615adantr 451 . . . . . . 7  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  e.  RR )
1716recnd 8877 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  e.  CC )
18 normne0 21725 . . . . . . 7  |-  ( A  e.  ~H  ->  (
( normh `  A )  =/=  0  <->  A  =/=  0h )
)
1918biimpar 471 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  =/=  0 )
2014, 17, 19divrec2d 9556 . . . . 5  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( normh `  ( T `  A )
)  /  ( normh `  A ) )  =  ( ( 1  / 
( normh `  A )
)  x.  ( normh `  ( T `  A
) ) ) )
2116, 19rereccld 9603 . . . . . . . . 9  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( 1  /  ( normh `  A ) )  e.  RR )
2221recnd 8877 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( 1  /  ( normh `  A ) )  e.  CC )
23 simpl 443 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  ->  A  e.  ~H )
248lnopmuli 22568 . . . . . . . 8  |-  ( ( ( 1  /  ( normh `  A ) )  e.  CC  /\  A  e.  ~H )  ->  ( T `  ( (
1  /  ( normh `  A ) )  .h  A ) )  =  ( ( 1  / 
( normh `  A )
)  .h  ( T `
 A ) ) )
2522, 23, 24syl2anc 642 . . . . . . 7  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( T `  (
( 1  /  ( normh `  A ) )  .h  A ) )  =  ( ( 1  /  ( normh `  A
) )  .h  ( T `  A )
) )
2625fveq2d 5545 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( T `  ( ( 1  / 
( normh `  A )
)  .h  A ) ) )  =  (
normh `  ( ( 1  /  ( normh `  A
) )  .h  ( T `  A )
) ) )
2710adantr 451 . . . . . . 7  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( T `  A
)  e.  ~H )
28 norm-iii 21735 . . . . . . 7  |-  ( ( ( 1  /  ( normh `  A ) )  e.  CC  /\  ( T `  A )  e.  ~H )  ->  ( normh `  ( ( 1  /  ( normh `  A
) )  .h  ( T `  A )
) )  =  ( ( abs `  (
1  /  ( normh `  A ) ) )  x.  ( normh `  ( T `  A )
) ) )
2922, 27, 28syl2anc 642 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( (
1  /  ( normh `  A ) )  .h  ( T `  A
) ) )  =  ( ( abs `  (
1  /  ( normh `  A ) ) )  x.  ( normh `  ( T `  A )
) ) )
30 normgt0 21722 . . . . . . . . . . 11  |-  ( A  e.  ~H  ->  ( A  =/=  0h  <->  0  <  (
normh `  A ) ) )
3130biimpa 470 . . . . . . . . . 10  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <  ( normh `  A ) )
3216, 31recgt0d 9707 . . . . . . . . 9  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <  ( 1  /  ( normh `  A
) ) )
33 0re 8854 . . . . . . . . . 10  |-  0  e.  RR
34 ltle 8926 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  ( 1  /  ( normh `  A ) )  e.  RR )  -> 
( 0  <  (
1  /  ( normh `  A ) )  -> 
0  <_  ( 1  /  ( normh `  A
) ) ) )
3533, 34mpan 651 . . . . . . . . 9  |-  ( ( 1  /  ( normh `  A ) )  e.  RR  ->  ( 0  <  ( 1  / 
( normh `  A )
)  ->  0  <_  ( 1  /  ( normh `  A ) ) ) )
3621, 32, 35sylc 56 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <_  ( 1  /  ( normh `  A
) ) )
3721, 36absidd 11921 . . . . . . 7  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( abs `  (
1  /  ( normh `  A ) ) )  =  ( 1  / 
( normh `  A )
) )
3837oveq1d 5889 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( abs `  (
1  /  ( normh `  A ) ) )  x.  ( normh `  ( T `  A )
) )  =  ( ( 1  /  ( normh `  A ) )  x.  ( normh `  ( T `  A )
) ) )
3926, 29, 383eqtrrd 2333 . . . . 5  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( 1  / 
( normh `  A )
)  x.  ( normh `  ( T `  A
) ) )  =  ( normh `  ( T `  ( ( 1  / 
( normh `  A )
)  .h  A ) ) ) )
4020, 39eqtrd 2328 . . . 4  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( normh `  ( T `  A )
)  /  ( normh `  A ) )  =  ( normh `  ( T `  ( ( 1  / 
( normh `  A )
)  .h  A ) ) ) )
41 hvmulcl 21609 . . . . . 6  |-  ( ( ( 1  /  ( normh `  A ) )  e.  CC  /\  A  e.  ~H )  ->  (
( 1  /  ( normh `  A ) )  .h  A )  e. 
~H )
4222, 23, 41syl2anc 642 . . . . 5  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( 1  / 
( normh `  A )
)  .h  A )  e.  ~H )
43 normcl 21720 . . . . . . 7  |-  ( ( ( 1  /  ( normh `  A ) )  .h  A )  e. 
~H  ->  ( normh `  (
( 1  /  ( normh `  A ) )  .h  A ) )  e.  RR )
4442, 43syl 15 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  e.  RR )
45 norm1 21844 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  =  1 )
46 eqle 8939 . . . . . 6  |-  ( ( ( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  e.  RR  /\  ( normh `  ( ( 1  / 
( normh `  A )
)  .h  A ) )  =  1 )  ->  ( normh `  (
( 1  /  ( normh `  A ) )  .h  A ) )  <_  1 )
4744, 45, 46syl2anc 642 . . . . 5  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  <_ 
1 )
48 nmoplb 22503 . . . . . 6  |-  ( ( T : ~H --> ~H  /\  ( ( 1  / 
( normh `  A )
)  .h  A )  e.  ~H  /\  ( normh `  ( ( 1  /  ( normh `  A
) )  .h  A
) )  <_  1
)  ->  ( normh `  ( T `  (
( 1  /  ( normh `  A ) )  .h  A ) ) )  <_  ( normop `  T
) )
499, 48mp3an1 1264 . . . . 5  |-  ( ( ( ( 1  / 
( normh `  A )
)  .h  A )  e.  ~H  /\  ( normh `  ( ( 1  /  ( normh `  A
) )  .h  A
) )  <_  1
)  ->  ( normh `  ( T `  (
( 1  /  ( normh `  A ) )  .h  A ) ) )  <_  ( normop `  T
) )
5042, 47, 49syl2anc 642 . . . 4  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( T `  ( ( 1  / 
( normh `  A )
)  .h  A ) ) )  <_  ( normop `  T ) )
5140, 50eqbrtrd 4059 . . 3  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( normh `  ( T `  A )
)  /  ( normh `  A ) )  <_ 
( normop `  T )
)
52 nmopre 22466 . . . . . 6  |-  ( T  e.  BndLinOp  ->  ( normop `  T
)  e.  RR )
536, 52ax-mp 8 . . . . 5  |-  ( normop `  T )  e.  RR
5453a1i 10 . . . 4  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normop `  T )  e.  RR )
55 ledivmul2 9649 . . . 4  |-  ( ( ( normh `  ( T `  A ) )  e.  RR  /\  ( normop `  T )  e.  RR  /\  ( ( normh `  A
)  e.  RR  /\  0  <  ( normh `  A
) ) )  -> 
( ( ( normh `  ( T `  A
) )  /  ( normh `  A ) )  <_  ( normop `  T
)  <->  ( normh `  ( T `  A )
)  <_  ( ( normop `  T )  x.  ( normh `  A ) ) ) )
5613, 54, 16, 31, 55syl112anc 1186 . . 3  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( ( normh `  ( T `  A
) )  /  ( normh `  A ) )  <_  ( normop `  T
)  <->  ( normh `  ( T `  A )
)  <_  ( ( normop `  T )  x.  ( normh `  A ) ) ) )
5751, 56mpbid 201 . 2  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( T `  A ) )  <_ 
( ( normop `  T
)  x.  ( normh `  A ) ) )
58 0le0 9843 . . . 4  |-  0  <_  0
598lnop0i 22566 . . . . . 6  |-  ( T `
 0h )  =  0h
6059fveq2i 5544 . . . . 5  |-  ( normh `  ( T `  0h ) )  =  (
normh `  0h )
61 norm0 21723 . . . . 5  |-  ( normh `  0h )  =  0
6260, 61eqtri 2316 . . . 4  |-  ( normh `  ( T `  0h ) )  =  0
6361oveq2i 5885 . . . . 5  |-  ( (
normop `  T )  x.  ( normh `  0h )
)  =  ( (
normop `  T )  x.  0 )
6453recni 8865 . . . . . 6  |-  ( normop `  T )  e.  CC
6564mul01i 9018 . . . . 5  |-  ( (
normop `  T )  x.  0 )  =  0
6663, 65eqtri 2316 . . . 4  |-  ( (
normop `  T )  x.  ( normh `  0h )
)  =  0
6758, 62, 663brtr4i 4067 . . 3  |-  ( normh `  ( T `  0h ) )  <_  (
( normop `  T )  x.  ( normh `  0h )
)
6867a1i 10 . 2  |-  ( A  e.  ~H  ->  ( normh `  ( T `  0h ) )  <_  (
( normop `  T )  x.  ( normh `  0h )
) )
695, 57, 68pm2.61ne 2534 1  |-  ( A  e.  ~H  ->  ( normh `  ( T `  A ) )  <_ 
( ( normop `  T
)  x.  ( normh `  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   class class class wbr 4039   -->wf 5267   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    x. cmul 8758    < clt 8883    <_ cle 8884    / cdiv 9439   abscabs 11735   ~Hchil 21515    .h csm 21517   normhcno 21519   0hc0v 21520   normopcnop 21541   LinOpclo 21543   BndLinOpcbo 21544
This theorem is referenced by:  nmbdoplb  22621  nmopcoadji  22697
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-hilex 21595  ax-hfvadd 21596  ax-hvcom 21597  ax-hvass 21598  ax-hv0cl 21599  ax-hvaddid 21600  ax-hfvmul 21601  ax-hvmulid 21602  ax-hvmulass 21603  ax-hvdistr1 21604  ax-hvdistr2 21605  ax-hvmul0 21606  ax-hfi 21674  ax-his1 21677  ax-his2 21678  ax-his3 21679  ax-his4 21680
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-grpo 20874  df-gid 20875  df-ablo 20965  df-vc 21118  df-nv 21164  df-va 21167  df-ba 21168  df-sm 21169  df-0v 21170  df-nmcv 21172  df-hnorm 21564  df-hba 21565  df-hvsub 21567  df-nmop 22435  df-lnop 22437  df-bdop 22438
  Copyright terms: Public domain W3C validator