MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmblolbii Structured version   Unicode version

Theorem nmblolbii 22301
Description: A lower bound for the norm of a bounded linear operator. (Contributed by NM, 7-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmblolbi.1  |-  X  =  ( BaseSet `  U )
nmblolbi.4  |-  L  =  ( normCV `  U )
nmblolbi.5  |-  M  =  ( normCV `  W )
nmblolbi.6  |-  N  =  ( U normOp OLD W
)
nmblolbi.7  |-  B  =  ( U  BLnOp  W )
nmblolbi.u  |-  U  e.  NrmCVec
nmblolbi.w  |-  W  e.  NrmCVec
nmblolbii.b  |-  T  e.  B
Assertion
Ref Expression
nmblolbii  |-  ( A  e.  X  ->  ( M `  ( T `  A ) )  <_ 
( ( N `  T )  x.  ( L `  A )
) )

Proof of Theorem nmblolbii
StepHypRef Expression
1 fveq2 5729 . . . 4  |-  ( A  =  ( 0vec `  U
)  ->  ( T `  A )  =  ( T `  ( 0vec `  U ) ) )
21fveq2d 5733 . . 3  |-  ( A  =  ( 0vec `  U
)  ->  ( M `  ( T `  A
) )  =  ( M `  ( T `
 ( 0vec `  U
) ) ) )
3 fveq2 5729 . . . 4  |-  ( A  =  ( 0vec `  U
)  ->  ( L `  A )  =  ( L `  ( 0vec `  U ) ) )
43oveq2d 6098 . . 3  |-  ( A  =  ( 0vec `  U
)  ->  ( ( N `  T )  x.  ( L `  A
) )  =  ( ( N `  T
)  x.  ( L `
 ( 0vec `  U
) ) ) )
52, 4breq12d 4226 . 2  |-  ( A  =  ( 0vec `  U
)  ->  ( ( M `  ( T `  A ) )  <_ 
( ( N `  T )  x.  ( L `  A )
)  <->  ( M `  ( T `  ( 0vec `  U ) ) )  <_  ( ( N `
 T )  x.  ( L `  ( 0vec `  U ) ) ) ) )
6 nmblolbi.u . . . . . . . . 9  |-  U  e.  NrmCVec
7 nmblolbi.1 . . . . . . . . . 10  |-  X  =  ( BaseSet `  U )
8 nmblolbi.4 . . . . . . . . . 10  |-  L  =  ( normCV `  U )
97, 8nvcl 22149 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( L `  A )  e.  RR )
106, 9mpan 653 . . . . . . . 8  |-  ( A  e.  X  ->  ( L `  A )  e.  RR )
1110adantr 453 . . . . . . 7  |-  ( ( A  e.  X  /\  A  =/=  ( 0vec `  U
) )  ->  ( L `  A )  e.  RR )
12 eqid 2437 . . . . . . . . . . 11  |-  ( 0vec `  U )  =  (
0vec `  U )
137, 12, 8nvz 22159 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
( L `  A
)  =  0  <->  A  =  ( 0vec `  U
) ) )
146, 13mpan 653 . . . . . . . . 9  |-  ( A  e.  X  ->  (
( L `  A
)  =  0  <->  A  =  ( 0vec `  U
) ) )
1514necon3bid 2637 . . . . . . . 8  |-  ( A  e.  X  ->  (
( L `  A
)  =/=  0  <->  A  =/=  ( 0vec `  U
) ) )
1615biimpar 473 . . . . . . 7  |-  ( ( A  e.  X  /\  A  =/=  ( 0vec `  U
) )  ->  ( L `  A )  =/=  0 )
1711, 16rereccld 9842 . . . . . 6  |-  ( ( A  e.  X  /\  A  =/=  ( 0vec `  U
) )  ->  (
1  /  ( L `
 A ) )  e.  RR )
187, 12, 8nvgt0 22165 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A  =/=  ( 0vec `  U
)  <->  0  <  ( L `  A )
) )
196, 18mpan 653 . . . . . . . . 9  |-  ( A  e.  X  ->  ( A  =/=  ( 0vec `  U
)  <->  0  <  ( L `  A )
) )
2019biimpa 472 . . . . . . . 8  |-  ( ( A  e.  X  /\  A  =/=  ( 0vec `  U
) )  ->  0  <  ( L `  A
) )
2111, 20recgt0d 9946 . . . . . . 7  |-  ( ( A  e.  X  /\  A  =/=  ( 0vec `  U
) )  ->  0  <  ( 1  /  ( L `  A )
) )
22 0re 9092 . . . . . . . 8  |-  0  e.  RR
23 ltle 9164 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  ( 1  /  ( L `  A )
)  e.  RR )  ->  ( 0  < 
( 1  /  ( L `  A )
)  ->  0  <_  ( 1  /  ( L `
 A ) ) ) )
2422, 17, 23sylancr 646 . . . . . . 7  |-  ( ( A  e.  X  /\  A  =/=  ( 0vec `  U
) )  ->  (
0  <  ( 1  /  ( L `  A ) )  -> 
0  <_  ( 1  /  ( L `  A ) ) ) )
2521, 24mpd 15 . . . . . 6  |-  ( ( A  e.  X  /\  A  =/=  ( 0vec `  U
) )  ->  0  <_  ( 1  /  ( L `  A )
) )
26 nmblolbi.w . . . . . . . . 9  |-  W  e.  NrmCVec
27 nmblolbii.b . . . . . . . . 9  |-  T  e.  B
28 eqid 2437 . . . . . . . . . 10  |-  ( BaseSet `  W )  =  (
BaseSet `  W )
29 nmblolbi.7 . . . . . . . . . 10  |-  B  =  ( U  BLnOp  W )
307, 28, 29blof 22287 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  B )  ->  T : X --> ( BaseSet `  W
) )
316, 26, 27, 30mp3an 1280 . . . . . . . 8  |-  T : X
--> ( BaseSet `  W )
3231ffvelrni 5870 . . . . . . 7  |-  ( A  e.  X  ->  ( T `  A )  e.  ( BaseSet `  W )
)
3332adantr 453 . . . . . 6  |-  ( ( A  e.  X  /\  A  =/=  ( 0vec `  U
) )  ->  ( T `  A )  e.  ( BaseSet `  W )
)
34 eqid 2437 . . . . . . . 8  |-  ( .s
OLD `  W )  =  ( .s OLD `  W )
35 nmblolbi.5 . . . . . . . 8  |-  M  =  ( normCV `  W )
3628, 34, 35nvsge0 22153 . . . . . . 7  |-  ( ( W  e.  NrmCVec  /\  (
( 1  /  ( L `  A )
)  e.  RR  /\  0  <_  ( 1  / 
( L `  A
) ) )  /\  ( T `  A )  e.  ( BaseSet `  W
) )  ->  ( M `  ( (
1  /  ( L `
 A ) ) ( .s OLD `  W
) ( T `  A ) ) )  =  ( ( 1  /  ( L `  A ) )  x.  ( M `  ( T `  A )
) ) )
3726, 36mp3an1 1267 . . . . . 6  |-  ( ( ( ( 1  / 
( L `  A
) )  e.  RR  /\  0  <_  ( 1  /  ( L `  A ) ) )  /\  ( T `  A )  e.  (
BaseSet `  W ) )  ->  ( M `  ( ( 1  / 
( L `  A
) ) ( .s
OLD `  W )
( T `  A
) ) )  =  ( ( 1  / 
( L `  A
) )  x.  ( M `  ( T `  A ) ) ) )
3817, 25, 33, 37syl21anc 1184 . . . . 5  |-  ( ( A  e.  X  /\  A  =/=  ( 0vec `  U
) )  ->  ( M `  ( (
1  /  ( L `
 A ) ) ( .s OLD `  W
) ( T `  A ) ) )  =  ( ( 1  /  ( L `  A ) )  x.  ( M `  ( T `  A )
) ) )
3917recnd 9115 . . . . . . 7  |-  ( ( A  e.  X  /\  A  =/=  ( 0vec `  U
) )  ->  (
1  /  ( L `
 A ) )  e.  CC )
40 simpl 445 . . . . . . 7  |-  ( ( A  e.  X  /\  A  =/=  ( 0vec `  U
) )  ->  A  e.  X )
41 eqid 2437 . . . . . . . . . . 11  |-  ( U 
LnOp  W )  =  ( U  LnOp  W )
4241, 29bloln 22286 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  B )  ->  T  e.  ( U  LnOp  W
) )
436, 26, 27, 42mp3an 1280 . . . . . . . . 9  |-  T  e.  ( U  LnOp  W
)
446, 26, 433pm3.2i 1133 . . . . . . . 8  |-  ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  ( U 
LnOp  W ) )
45 eqid 2437 . . . . . . . . 9  |-  ( .s
OLD `  U )  =  ( .s OLD `  U )
467, 45, 34, 41lnomul 22262 . . . . . . . 8  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  ( U  LnOp  W
) )  /\  (
( 1  /  ( L `  A )
)  e.  CC  /\  A  e.  X )
)  ->  ( T `  ( ( 1  / 
( L `  A
) ) ( .s
OLD `  U ) A ) )  =  ( ( 1  / 
( L `  A
) ) ( .s
OLD `  W )
( T `  A
) ) )
4744, 46mpan 653 . . . . . . 7  |-  ( ( ( 1  /  ( L `  A )
)  e.  CC  /\  A  e.  X )  ->  ( T `  (
( 1  /  ( L `  A )
) ( .s OLD `  U ) A ) )  =  ( ( 1  /  ( L `
 A ) ) ( .s OLD `  W
) ( T `  A ) ) )
4839, 40, 47syl2anc 644 . . . . . 6  |-  ( ( A  e.  X  /\  A  =/=  ( 0vec `  U
) )  ->  ( T `  ( (
1  /  ( L `
 A ) ) ( .s OLD `  U
) A ) )  =  ( ( 1  /  ( L `  A ) ) ( .s OLD `  W
) ( T `  A ) ) )
4948fveq2d 5733 . . . . 5  |-  ( ( A  e.  X  /\  A  =/=  ( 0vec `  U
) )  ->  ( M `  ( T `  ( ( 1  / 
( L `  A
) ) ( .s
OLD `  U ) A ) ) )  =  ( M `  ( ( 1  / 
( L `  A
) ) ( .s
OLD `  W )
( T `  A
) ) ) )
5028, 35nvcl 22149 . . . . . . . . 9  |-  ( ( W  e.  NrmCVec  /\  ( T `  A )  e.  ( BaseSet `  W )
)  ->  ( M `  ( T `  A
) )  e.  RR )
5126, 32, 50sylancr 646 . . . . . . . 8  |-  ( A  e.  X  ->  ( M `  ( T `  A ) )  e.  RR )
5251adantr 453 . . . . . . 7  |-  ( ( A  e.  X  /\  A  =/=  ( 0vec `  U
) )  ->  ( M `  ( T `  A ) )  e.  RR )
5352recnd 9115 . . . . . 6  |-  ( ( A  e.  X  /\  A  =/=  ( 0vec `  U
) )  ->  ( M `  ( T `  A ) )  e.  CC )
5411recnd 9115 . . . . . 6  |-  ( ( A  e.  X  /\  A  =/=  ( 0vec `  U
) )  ->  ( L `  A )  e.  CC )
5553, 54, 16divrec2d 9795 . . . . 5  |-  ( ( A  e.  X  /\  A  =/=  ( 0vec `  U
) )  ->  (
( M `  ( T `  A )
)  /  ( L `
 A ) )  =  ( ( 1  /  ( L `  A ) )  x.  ( M `  ( T `  A )
) ) )
5638, 49, 553eqtr4rd 2480 . . . 4  |-  ( ( A  e.  X  /\  A  =/=  ( 0vec `  U
) )  ->  (
( M `  ( T `  A )
)  /  ( L `
 A ) )  =  ( M `  ( T `  ( ( 1  /  ( L `
 A ) ) ( .s OLD `  U
) A ) ) ) )
577, 45nvscl 22108 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  (
1  /  ( L `
 A ) )  e.  CC  /\  A  e.  X )  ->  (
( 1  /  ( L `  A )
) ( .s OLD `  U ) A )  e.  X )
586, 57mp3an1 1267 . . . . . 6  |-  ( ( ( 1  /  ( L `  A )
)  e.  CC  /\  A  e.  X )  ->  ( ( 1  / 
( L `  A
) ) ( .s
OLD `  U ) A )  e.  X
)
5939, 40, 58syl2anc 644 . . . . 5  |-  ( ( A  e.  X  /\  A  =/=  ( 0vec `  U
) )  ->  (
( 1  /  ( L `  A )
) ( .s OLD `  U ) A )  e.  X )
6058ancoms 441 . . . . . . . 8  |-  ( ( A  e.  X  /\  ( 1  /  ( L `  A )
)  e.  CC )  ->  ( ( 1  /  ( L `  A ) ) ( .s OLD `  U
) A )  e.  X )
6139, 60syldan 458 . . . . . . 7  |-  ( ( A  e.  X  /\  A  =/=  ( 0vec `  U
) )  ->  (
( 1  /  ( L `  A )
) ( .s OLD `  U ) A )  e.  X )
627, 8nvcl 22149 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  (
( 1  /  ( L `  A )
) ( .s OLD `  U ) A )  e.  X )  -> 
( L `  (
( 1  /  ( L `  A )
) ( .s OLD `  U ) A ) )  e.  RR )
636, 61, 62sylancr 646 . . . . . 6  |-  ( ( A  e.  X  /\  A  =/=  ( 0vec `  U
) )  ->  ( L `  ( (
1  /  ( L `
 A ) ) ( .s OLD `  U
) A ) )  e.  RR )
647, 45, 12, 8nv1 22166 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  A  =/=  ( 0vec `  U
) )  ->  ( L `  ( (
1  /  ( L `
 A ) ) ( .s OLD `  U
) A ) )  =  1 )
656, 64mp3an1 1267 . . . . . 6  |-  ( ( A  e.  X  /\  A  =/=  ( 0vec `  U
) )  ->  ( L `  ( (
1  /  ( L `
 A ) ) ( .s OLD `  U
) A ) )  =  1 )
66 eqle 9177 . . . . . 6  |-  ( ( ( L `  (
( 1  /  ( L `  A )
) ( .s OLD `  U ) A ) )  e.  RR  /\  ( L `  ( ( 1  /  ( L `
 A ) ) ( .s OLD `  U
) A ) )  =  1 )  -> 
( L `  (
( 1  /  ( L `  A )
) ( .s OLD `  U ) A ) )  <_  1 )
6763, 65, 66syl2anc 644 . . . . 5  |-  ( ( A  e.  X  /\  A  =/=  ( 0vec `  U
) )  ->  ( L `  ( (
1  /  ( L `
 A ) ) ( .s OLD `  U
) A ) )  <_  1 )
686, 26, 313pm3.2i 1133 . . . . . 6  |-  ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X --> ( BaseSet `  W ) )
69 nmblolbi.6 . . . . . . 7  |-  N  =  ( U normOp OLD W
)
707, 28, 8, 35, 69nmoolb 22273 . . . . . 6  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X --> ( BaseSet `  W
) )  /\  (
( ( 1  / 
( L `  A
) ) ( .s
OLD `  U ) A )  e.  X  /\  ( L `  (
( 1  /  ( L `  A )
) ( .s OLD `  U ) A ) )  <_  1 ) )  ->  ( M `  ( T `  (
( 1  /  ( L `  A )
) ( .s OLD `  U ) A ) ) )  <_  ( N `  T )
)
7168, 70mpan 653 . . . . 5  |-  ( ( ( ( 1  / 
( L `  A
) ) ( .s
OLD `  U ) A )  e.  X  /\  ( L `  (
( 1  /  ( L `  A )
) ( .s OLD `  U ) A ) )  <_  1 )  ->  ( M `  ( T `  ( ( 1  /  ( L `
 A ) ) ( .s OLD `  U
) A ) ) )  <_  ( N `  T ) )
7259, 67, 71syl2anc 644 . . . 4  |-  ( ( A  e.  X  /\  A  =/=  ( 0vec `  U
) )  ->  ( M `  ( T `  ( ( 1  / 
( L `  A
) ) ( .s
OLD `  U ) A ) ) )  <_  ( N `  T ) )
7356, 72eqbrtrd 4233 . . 3  |-  ( ( A  e.  X  /\  A  =/=  ( 0vec `  U
) )  ->  (
( M `  ( T `  A )
)  /  ( L `
 A ) )  <_  ( N `  T ) )
747, 28, 69, 29nmblore 22288 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  B )  ->  ( N `  T )  e.  RR )
756, 26, 27, 74mp3an 1280 . . . . . . 7  |-  ( N `
 T )  e.  RR
7675a1i 11 . . . . . 6  |-  ( A  e.  X  ->  ( N `  T )  e.  RR )
7751, 10, 763jca 1135 . . . . 5  |-  ( A  e.  X  ->  (
( M `  ( T `  A )
)  e.  RR  /\  ( L `  A )  e.  RR  /\  ( N `  T )  e.  RR ) )
7877adantr 453 . . . 4  |-  ( ( A  e.  X  /\  A  =/=  ( 0vec `  U
) )  ->  (
( M `  ( T `  A )
)  e.  RR  /\  ( L `  A )  e.  RR  /\  ( N `  T )  e.  RR ) )
79 ledivmul2OLD 9889 . . . 4  |-  ( ( ( ( M `  ( T `  A ) )  e.  RR  /\  ( L `  A )  e.  RR  /\  ( N `  T )  e.  RR )  /\  0  <  ( L `  A
) )  ->  (
( ( M `  ( T `  A ) )  /  ( L `
 A ) )  <_  ( N `  T )  <->  ( M `  ( T `  A
) )  <_  (
( N `  T
)  x.  ( L `
 A ) ) ) )
8078, 20, 79syl2anc 644 . . 3  |-  ( ( A  e.  X  /\  A  =/=  ( 0vec `  U
) )  ->  (
( ( M `  ( T `  A ) )  /  ( L `
 A ) )  <_  ( N `  T )  <->  ( M `  ( T `  A
) )  <_  (
( N `  T
)  x.  ( L `
 A ) ) ) )
8173, 80mpbid 203 . 2  |-  ( ( A  e.  X  /\  A  =/=  ( 0vec `  U
) )  ->  ( M `  ( T `  A ) )  <_ 
( ( N `  T )  x.  ( L `  A )
) )
82 0le0 10082 . . . 4  |-  0  <_  0
83 eqid 2437 . . . . . . . 8  |-  ( 0vec `  W )  =  (
0vec `  W )
847, 28, 12, 83, 41lno0 22258 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  ( U  LnOp  W ) )  ->  ( T `  ( 0vec `  U
) )  =  (
0vec `  W )
)
856, 26, 43, 84mp3an 1280 . . . . . 6  |-  ( T `
 ( 0vec `  U
) )  =  (
0vec `  W )
8685fveq2i 5732 . . . . 5  |-  ( M `
 ( T `  ( 0vec `  U )
) )  =  ( M `  ( 0vec `  W ) )
8783, 35nvz0 22158 . . . . . 6  |-  ( W  e.  NrmCVec  ->  ( M `  ( 0vec `  W )
)  =  0 )
8826, 87ax-mp 8 . . . . 5  |-  ( M `
 ( 0vec `  W
) )  =  0
8986, 88eqtri 2457 . . . 4  |-  ( M `
 ( T `  ( 0vec `  U )
) )  =  0
9012, 8nvz0 22158 . . . . . . 7  |-  ( U  e.  NrmCVec  ->  ( L `  ( 0vec `  U )
)  =  0 )
916, 90ax-mp 8 . . . . . 6  |-  ( L `
 ( 0vec `  U
) )  =  0
9291oveq2i 6093 . . . . 5  |-  ( ( N `  T )  x.  ( L `  ( 0vec `  U )
) )  =  ( ( N `  T
)  x.  0 )
9375recni 9103 . . . . . 6  |-  ( N `
 T )  e.  CC
9493mul01i 9257 . . . . 5  |-  ( ( N `  T )  x.  0 )  =  0
9592, 94eqtri 2457 . . . 4  |-  ( ( N `  T )  x.  ( L `  ( 0vec `  U )
) )  =  0
9682, 89, 953brtr4i 4241 . . 3  |-  ( M `
 ( T `  ( 0vec `  U )
) )  <_  (
( N `  T
)  x.  ( L `
 ( 0vec `  U
) ) )
9796a1i 11 . 2  |-  ( A  e.  X  ->  ( M `  ( T `  ( 0vec `  U
) ) )  <_ 
( ( N `  T )  x.  ( L `  ( 0vec `  U ) ) ) )
985, 81, 97pm2.61ne 2680 1  |-  ( A  e.  X  ->  ( M `  ( T `  A ) )  <_ 
( ( N `  T )  x.  ( L `  A )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2600   class class class wbr 4213   -->wf 5451   ` cfv 5455  (class class class)co 6082   CCcc 8989   RRcr 8990   0cc0 8991   1c1 8992    x. cmul 8996    < clt 9121    <_ cle 9122    / cdiv 9678   NrmCVeccnv 22064   BaseSetcba 22066   .s
OLDcns 22067   0veccn0v 22068   normCVcnmcv 22070    LnOp clno 22242   normOp OLDcnmoo 22243    BLnOp cblo 22244
This theorem is referenced by:  nmblolbi  22302
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702  ax-cnex 9047  ax-resscn 9048  ax-1cn 9049  ax-icn 9050  ax-addcl 9051  ax-addrcl 9052  ax-mulcl 9053  ax-mulrcl 9054  ax-mulcom 9055  ax-addass 9056  ax-mulass 9057  ax-distr 9058  ax-i2m1 9059  ax-1ne0 9060  ax-1rid 9061  ax-rnegex 9062  ax-rrecex 9063  ax-cnre 9064  ax-pre-lttri 9065  ax-pre-lttrn 9066  ax-pre-ltadd 9067  ax-pre-mulgt0 9068  ax-pre-sup 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-reu 2713  df-rmo 2714  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-we 4544  df-ord 4585  df-on 4586  df-lim 4587  df-suc 4588  df-om 4847  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-1st 6350  df-2nd 6351  df-riota 6550  df-recs 6634  df-rdg 6669  df-er 6906  df-map 7021  df-en 7111  df-dom 7112  df-sdom 7113  df-sup 7447  df-pnf 9123  df-mnf 9124  df-xr 9125  df-ltxr 9126  df-le 9127  df-sub 9294  df-neg 9295  df-div 9679  df-nn 10002  df-2 10059  df-3 10060  df-n0 10223  df-z 10284  df-uz 10490  df-rp 10614  df-seq 11325  df-exp 11384  df-cj 11905  df-re 11906  df-im 11907  df-sqr 12041  df-abs 12042  df-grpo 21780  df-gid 21781  df-ginv 21782  df-ablo 21871  df-vc 22026  df-nv 22072  df-va 22075  df-ba 22076  df-sm 22077  df-0v 22078  df-nmcv 22080  df-lno 22246  df-nmoo 22247  df-blo 22248
  Copyright terms: Public domain W3C validator