MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmcvcn Unicode version

Theorem nmcvcn 21323
Description: The norm of a normed complex vector space is a continuous function. (Contributed by NM, 16-May-2007.) (Proof shortened by Mario Carneiro, 10-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmcvcn.1  |-  N  =  ( normCV `  U )
nmcvcn.2  |-  C  =  ( IndMet `  U )
nmcvcn.j  |-  J  =  ( MetOpen `  C )
nmcvcn.k  |-  K  =  ( topGen `  ran  (,) )
Assertion
Ref Expression
nmcvcn  |-  ( U  e.  NrmCVec  ->  N  e.  ( J  Cn  K ) )

Proof of Theorem nmcvcn
Dummy variables  e 
d  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2316 . . 3  |-  ( BaseSet `  U )  =  (
BaseSet `  U )
2 nmcvcn.1 . . 3  |-  N  =  ( normCV `  U )
31, 2nvf 21279 . 2  |-  ( U  e.  NrmCVec  ->  N : (
BaseSet `  U ) --> RR )
4 simprr 733 . . . 4  |-  ( ( U  e.  NrmCVec  /\  (
x  e.  ( BaseSet `  U )  /\  e  e.  RR+ ) )  -> 
e  e.  RR+ )
51, 2nvcl 21280 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  x  e.  ( BaseSet `  U )
)  ->  ( N `  x )  e.  RR )
65ex 423 . . . . . . . . . . . . 13  |-  ( U  e.  NrmCVec  ->  ( x  e.  ( BaseSet `  U )  ->  ( N `  x
)  e.  RR ) )
71, 2nvcl 21280 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  y  e.  ( BaseSet `  U )
)  ->  ( N `  y )  e.  RR )
87ex 423 . . . . . . . . . . . . 13  |-  ( U  e.  NrmCVec  ->  ( y  e.  ( BaseSet `  U )  ->  ( N `  y
)  e.  RR ) )
96, 8anim12d 546 . . . . . . . . . . . 12  |-  ( U  e.  NrmCVec  ->  ( ( x  e.  ( BaseSet `  U
)  /\  y  e.  ( BaseSet `  U )
)  ->  ( ( N `  x )  e.  RR  /\  ( N `
 y )  e.  RR ) ) )
10 eqid 2316 . . . . . . . . . . . . . 14  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )
1110remet 18348 . . . . . . . . . . . . 13  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  e.  ( Met `  RR )
12 metcl 17949 . . . . . . . . . . . . 13  |-  ( ( ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )  e.  ( Met `  RR )  /\  ( N `  x )  e.  RR  /\  ( N `  y
)  e.  RR )  ->  ( ( N `
 x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  e.  RR )
1311, 12mp3an1 1264 . . . . . . . . . . . 12  |-  ( ( ( N `  x
)  e.  RR  /\  ( N `  y )  e.  RR )  -> 
( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  e.  RR )
149, 13syl6 29 . . . . . . . . . . 11  |-  ( U  e.  NrmCVec  ->  ( ( x  e.  ( BaseSet `  U
)  /\  y  e.  ( BaseSet `  U )
)  ->  ( ( N `  x )
( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( N `  y
) )  e.  RR ) )
15143impib 1149 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  x  e.  ( BaseSet `  U )  /\  y  e.  ( BaseSet
`  U ) )  ->  ( ( N `
 x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  e.  RR )
16 nmcvcn.2 . . . . . . . . . . . 12  |-  C  =  ( IndMet `  U )
171, 16imsmet 21315 . . . . . . . . . . 11  |-  ( U  e.  NrmCVec  ->  C  e.  ( Met `  ( BaseSet `  U ) ) )
18 metcl 17949 . . . . . . . . . . 11  |-  ( ( C  e.  ( Met `  ( BaseSet `  U )
)  /\  x  e.  ( BaseSet `  U )  /\  y  e.  ( BaseSet
`  U ) )  ->  ( x C y )  e.  RR )
1917, 18syl3an1 1215 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  x  e.  ( BaseSet `  U )  /\  y  e.  ( BaseSet
`  U ) )  ->  ( x C y )  e.  RR )
20 eqid 2316 . . . . . . . . . . . 12  |-  ( +v
`  U )  =  ( +v `  U
)
21 eqid 2316 . . . . . . . . . . . 12  |-  ( .s
OLD `  U )  =  ( .s OLD `  U )
221, 20, 21, 2nvabs 21294 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  x  e.  ( BaseSet `  U )  /\  y  e.  ( BaseSet
`  U ) )  ->  ( abs `  (
( N `  x
)  -  ( N `
 y ) ) )  <_  ( N `  ( x ( +v
`  U ) (
-u 1 ( .s
OLD `  U )
y ) ) ) )
2393impib 1149 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  x  e.  ( BaseSet `  U )  /\  y  e.  ( BaseSet
`  U ) )  ->  ( ( N `
 x )  e.  RR  /\  ( N `
 y )  e.  RR ) )
2410remetdval 18347 . . . . . . . . . . . 12  |-  ( ( ( N `  x
)  e.  RR  /\  ( N `  y )  e.  RR )  -> 
( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  =  ( abs `  (
( N `  x
)  -  ( N `
 y ) ) ) )
2523, 24syl 15 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  x  e.  ( BaseSet `  U )  /\  y  e.  ( BaseSet
`  U ) )  ->  ( ( N `
 x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  =  ( abs `  (
( N `  x
)  -  ( N `
 y ) ) ) )
261, 20, 21, 2, 16imsdval2 21311 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  x  e.  ( BaseSet `  U )  /\  y  e.  ( BaseSet
`  U ) )  ->  ( x C y )  =  ( N `  ( x ( +v `  U
) ( -u 1
( .s OLD `  U
) y ) ) ) )
2722, 25, 263brtr4d 4090 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  x  e.  ( BaseSet `  U )  /\  y  e.  ( BaseSet
`  U ) )  ->  ( ( N `
 x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <_  ( x C y ) )
2815, 19, 27jca31 520 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  x  e.  ( BaseSet `  U )  /\  y  e.  ( BaseSet
`  U ) )  ->  ( ( ( ( N `  x
) ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) ( N `  y
) )  e.  RR  /\  ( x C y )  e.  RR )  /\  ( ( N `
 x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <_  ( x C y ) ) )
29283expa 1151 . . . . . . . 8  |-  ( ( ( U  e.  NrmCVec  /\  x  e.  ( BaseSet `  U ) )  /\  y  e.  ( BaseSet `  U ) )  -> 
( ( ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( N `  y
) )  e.  RR  /\  ( x C y )  e.  RR )  /\  ( ( N `
 x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <_  ( x C y ) ) )
30 rpre 10407 . . . . . . . 8  |-  ( e  e.  RR+  ->  e  e.  RR )
31 lelttr 8957 . . . . . . . . . . 11  |-  ( ( ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  e.  RR  /\  (
x C y )  e.  RR  /\  e  e.  RR )  ->  (
( ( ( N `
 x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <_  ( x C y )  /\  (
x C y )  <  e )  -> 
( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e ) )
32313expa 1151 . . . . . . . . . 10  |-  ( ( ( ( ( N `
 x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  e.  RR  /\  (
x C y )  e.  RR )  /\  e  e.  RR )  ->  ( ( ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( N `  y
) )  <_  (
x C y )  /\  ( x C y )  <  e
)  ->  ( ( N `  x )
( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( N `  y
) )  <  e
) )
3332expdimp 426 . . . . . . . . 9  |-  ( ( ( ( ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( N `  y
) )  e.  RR  /\  ( x C y )  e.  RR )  /\  e  e.  RR )  /\  ( ( N `
 x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <_  ( x C y ) )  -> 
( ( x C y )  <  e  ->  ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e ) )
3433an32s 779 . . . . . . . 8  |-  ( ( ( ( ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( N `  y
) )  e.  RR  /\  ( x C y )  e.  RR )  /\  ( ( N `
 x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <_  ( x C y ) )  /\  e  e.  RR )  ->  ( ( x C y )  <  e  ->  ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e ) )
3529, 30, 34syl2an 463 . . . . . . 7  |-  ( ( ( ( U  e.  NrmCVec 
/\  x  e.  (
BaseSet `  U ) )  /\  y  e.  (
BaseSet `  U ) )  /\  e  e.  RR+ )  ->  ( ( x C y )  < 
e  ->  ( ( N `  x )
( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( N `  y
) )  <  e
) )
3635ex 423 . . . . . 6  |-  ( ( ( U  e.  NrmCVec  /\  x  e.  ( BaseSet `  U ) )  /\  y  e.  ( BaseSet `  U ) )  -> 
( e  e.  RR+  ->  ( ( x C y )  <  e  ->  ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e ) ) )
3736ralrimdva 2667 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  x  e.  ( BaseSet `  U )
)  ->  ( e  e.  RR+  ->  A. y  e.  ( BaseSet `  U )
( ( x C y )  <  e  ->  ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e ) ) )
3837impr 602 . . . 4  |-  ( ( U  e.  NrmCVec  /\  (
x  e.  ( BaseSet `  U )  /\  e  e.  RR+ ) )  ->  A. y  e.  ( BaseSet
`  U ) ( ( x C y )  <  e  -> 
( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e ) )
39 breq2 4064 . . . . . . 7  |-  ( d  =  e  ->  (
( x C y )  <  d  <->  ( x C y )  < 
e ) )
4039imbi1d 308 . . . . . 6  |-  ( d  =  e  ->  (
( ( x C y )  <  d  ->  ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e )  <->  ( (
x C y )  <  e  ->  (
( N `  x
) ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) ( N `  y
) )  <  e
) ) )
4140ralbidv 2597 . . . . 5  |-  ( d  =  e  ->  ( A. y  e.  ( BaseSet
`  U ) ( ( x C y )  <  d  -> 
( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e )  <->  A. y  e.  ( BaseSet `  U )
( ( x C y )  <  e  ->  ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e ) ) )
4241rspcev 2918 . . . 4  |-  ( ( e  e.  RR+  /\  A. y  e.  ( BaseSet `  U ) ( ( x C y )  <  e  ->  (
( N `  x
) ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) ( N `  y
) )  <  e
) )  ->  E. d  e.  RR+  A. y  e.  ( BaseSet `  U )
( ( x C y )  <  d  ->  ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e ) )
434, 38, 42syl2anc 642 . . 3  |-  ( ( U  e.  NrmCVec  /\  (
x  e.  ( BaseSet `  U )  /\  e  e.  RR+ ) )  ->  E. d  e.  RR+  A. y  e.  ( BaseSet `  U )
( ( x C y )  <  d  ->  ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e ) )
4443ralrimivva 2669 . 2  |-  ( U  e.  NrmCVec  ->  A. x  e.  (
BaseSet `  U ) A. e  e.  RR+  E. d  e.  RR+  A. y  e.  ( BaseSet `  U )
( ( x C y )  <  d  ->  ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e ) )
451, 16imsxmet 21316 . . 3  |-  ( U  e.  NrmCVec  ->  C  e.  ( * Met `  ( BaseSet
`  U ) ) )
4610rexmet 18349 . . 3  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  e.  ( * Met `  RR )
47 nmcvcn.j . . . 4  |-  J  =  ( MetOpen `  C )
48 nmcvcn.k . . . . 5  |-  K  =  ( topGen `  ran  (,) )
49 eqid 2316 . . . . . 6  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )
5010, 49tgioo 18354 . . . . 5  |-  ( topGen ` 
ran  (,) )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) )
5148, 50eqtri 2336 . . . 4  |-  K  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) )
5247, 51metcn 18141 . . 3  |-  ( ( C  e.  ( * Met `  ( BaseSet `  U ) )  /\  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )  e.  ( * Met `  RR ) )  -> 
( N  e.  ( J  Cn  K )  <-> 
( N : (
BaseSet `  U ) --> RR 
/\  A. x  e.  (
BaseSet `  U ) A. e  e.  RR+  E. d  e.  RR+  A. y  e.  ( BaseSet `  U )
( ( x C y )  <  d  ->  ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e ) ) ) )
5345, 46, 52sylancl 643 . 2  |-  ( U  e.  NrmCVec  ->  ( N  e.  ( J  Cn  K
)  <->  ( N :
( BaseSet `  U ) --> RR  /\  A. x  e.  ( BaseSet `  U ) A. e  e.  RR+  E. d  e.  RR+  A. y  e.  ( BaseSet `  U )
( ( x C y )  <  d  ->  ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e ) ) ) )
543, 44, 53mpbir2and 888 1  |-  ( U  e.  NrmCVec  ->  N  e.  ( J  Cn  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1633    e. wcel 1701   A.wral 2577   E.wrex 2578   class class class wbr 4060    X. cxp 4724   ran crn 4727    |` cres 4728    o. ccom 4730   -->wf 5288   ` cfv 5292  (class class class)co 5900   RRcr 8781   1c1 8783    < clt 8912    <_ cle 8913    - cmin 9082   -ucneg 9083   RR+crp 10401   (,)cioo 10703   abscabs 11766   topGenctg 13391   * Metcxmt 16418   Metcme 16419   MetOpencmopn 16423    Cn ccn 17010   NrmCVeccnv 21195   +vcpv 21196   BaseSetcba 21197   .s
OLDcns 21198   normCVcnmcv 21201   IndMetcims 21202
This theorem is referenced by:  nmcnc  21324
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-rep 4168  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-cnex 8838  ax-resscn 8839  ax-1cn 8840  ax-icn 8841  ax-addcl 8842  ax-addrcl 8843  ax-mulcl 8844  ax-mulrcl 8845  ax-mulcom 8846  ax-addass 8847  ax-mulass 8848  ax-distr 8849  ax-i2m1 8850  ax-1ne0 8851  ax-1rid 8852  ax-rnegex 8853  ax-rrecex 8854  ax-cnre 8855  ax-pre-lttri 8856  ax-pre-lttrn 8857  ax-pre-ltadd 8858  ax-pre-mulgt0 8859  ax-pre-sup 8860  ax-addf 8861  ax-mulf 8862
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rmo 2585  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-1st 6164  df-2nd 6165  df-riota 6346  df-recs 6430  df-rdg 6465  df-er 6702  df-map 6817  df-en 6907  df-dom 6908  df-sdom 6909  df-sup 7239  df-pnf 8914  df-mnf 8915  df-xr 8916  df-ltxr 8917  df-le 8918  df-sub 9084  df-neg 9085  df-div 9469  df-nn 9792  df-2 9849  df-3 9850  df-n0 10013  df-z 10072  df-uz 10278  df-q 10364  df-rp 10402  df-xneg 10499  df-xadd 10500  df-xmul 10501  df-ioo 10707  df-seq 11094  df-exp 11152  df-cj 11631  df-re 11632  df-im 11633  df-sqr 11767  df-abs 11768  df-topgen 13393  df-xmet 16425  df-met 16426  df-bl 16427  df-mopn 16428  df-top 16692  df-bases 16694  df-topon 16695  df-cn 17013  df-cnp 17014  df-grpo 20911  df-gid 20912  df-ginv 20913  df-gdiv 20914  df-ablo 21002  df-vc 21157  df-nv 21203  df-va 21206  df-ba 21207  df-sm 21208  df-0v 21209  df-vs 21210  df-nmcv 21211  df-ims 21212
  Copyright terms: Public domain W3C validator