HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmfnlb Structured version   Unicode version

Theorem nmfnlb 23427
Description: A lower bound for a functional norm. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmfnlb  |-  ( ( T : ~H --> CC  /\  A  e.  ~H  /\  ( normh `  A )  <_ 
1 )  ->  ( abs `  ( T `  A ) )  <_ 
( normfn `  T )
)

Proof of Theorem nmfnlb
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmfnsetre 23380 . . . . 5  |-  ( T : ~H --> CC  ->  { x  |  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  x  =  ( abs `  ( T `  y ) ) ) }  C_  RR )
2 ressxr 9129 . . . . 5  |-  RR  C_  RR*
31, 2syl6ss 3360 . . . 4  |-  ( T : ~H --> CC  ->  { x  |  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  x  =  ( abs `  ( T `  y ) ) ) }  C_  RR* )
433ad2ant1 978 . . 3  |-  ( ( T : ~H --> CC  /\  A  e.  ~H  /\  ( normh `  A )  <_ 
1 )  ->  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( T `  y
) ) ) } 
C_  RR* )
5 fveq2 5728 . . . . . . . . 9  |-  ( y  =  A  ->  ( normh `  y )  =  ( normh `  A )
)
65breq1d 4222 . . . . . . . 8  |-  ( y  =  A  ->  (
( normh `  y )  <_  1  <->  ( normh `  A
)  <_  1 ) )
7 fveq2 5728 . . . . . . . . . 10  |-  ( y  =  A  ->  ( T `  y )  =  ( T `  A ) )
87fveq2d 5732 . . . . . . . . 9  |-  ( y  =  A  ->  ( abs `  ( T `  y ) )  =  ( abs `  ( T `  A )
) )
98eqeq2d 2447 . . . . . . . 8  |-  ( y  =  A  ->  (
( abs `  ( T `  A )
)  =  ( abs `  ( T `  y
) )  <->  ( abs `  ( T `  A
) )  =  ( abs `  ( T `
 A ) ) ) )
106, 9anbi12d 692 . . . . . . 7  |-  ( y  =  A  ->  (
( ( normh `  y
)  <_  1  /\  ( abs `  ( T `
 A ) )  =  ( abs `  ( T `  y )
) )  <->  ( ( normh `  A )  <_ 
1  /\  ( abs `  ( T `  A
) )  =  ( abs `  ( T `
 A ) ) ) ) )
11 eqid 2436 . . . . . . . 8  |-  ( abs `  ( T `  A
) )  =  ( abs `  ( T `
 A ) )
1211biantru 492 . . . . . . 7  |-  ( (
normh `  A )  <_ 
1  <->  ( ( normh `  A )  <_  1  /\  ( abs `  ( T `  A )
)  =  ( abs `  ( T `  A
) ) ) )
1310, 12syl6bbr 255 . . . . . 6  |-  ( y  =  A  ->  (
( ( normh `  y
)  <_  1  /\  ( abs `  ( T `
 A ) )  =  ( abs `  ( T `  y )
) )  <->  ( normh `  A )  <_  1
) )
1413rspcev 3052 . . . . 5  |-  ( ( A  e.  ~H  /\  ( normh `  A )  <_  1 )  ->  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  ( abs `  ( T `  A )
)  =  ( abs `  ( T `  y
) ) ) )
15 fvex 5742 . . . . . 6  |-  ( abs `  ( T `  A
) )  e.  _V
16 eqeq1 2442 . . . . . . . 8  |-  ( x  =  ( abs `  ( T `  A )
)  ->  ( x  =  ( abs `  ( T `  y )
)  <->  ( abs `  ( T `  A )
)  =  ( abs `  ( T `  y
) ) ) )
1716anbi2d 685 . . . . . . 7  |-  ( x  =  ( abs `  ( T `  A )
)  ->  ( (
( normh `  y )  <_  1  /\  x  =  ( abs `  ( T `  y )
) )  <->  ( ( normh `  y )  <_ 
1  /\  ( abs `  ( T `  A
) )  =  ( abs `  ( T `
 y ) ) ) ) )
1817rexbidv 2726 . . . . . 6  |-  ( x  =  ( abs `  ( T `  A )
)  ->  ( E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  ( T `  y )
) )  <->  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  ( abs `  ( T `  A )
)  =  ( abs `  ( T `  y
) ) ) ) )
1915, 18elab 3082 . . . . 5  |-  ( ( abs `  ( T `
 A ) )  e.  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( T `  y
) ) ) }  <->  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  ( abs `  ( T `
 A ) )  =  ( abs `  ( T `  y )
) ) )
2014, 19sylibr 204 . . . 4  |-  ( ( A  e.  ~H  /\  ( normh `  A )  <_  1 )  ->  ( abs `  ( T `  A ) )  e. 
{ x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  ( T `  y )
) ) } )
21203adant1 975 . . 3  |-  ( ( T : ~H --> CC  /\  A  e.  ~H  /\  ( normh `  A )  <_ 
1 )  ->  ( abs `  ( T `  A ) )  e. 
{ x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  ( T `  y )
) ) } )
22 supxrub 10903 . . 3  |-  ( ( { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  ( T `  y )
) ) }  C_  RR* 
/\  ( abs `  ( T `  A )
)  e.  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( T `  y
) ) ) } )  ->  ( abs `  ( T `  A
) )  <_  sup ( { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  ( T `  y )
) ) } ,  RR* ,  <  ) )
234, 21, 22syl2anc 643 . 2  |-  ( ( T : ~H --> CC  /\  A  e.  ~H  /\  ( normh `  A )  <_ 
1 )  ->  ( abs `  ( T `  A ) )  <_  sup ( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( T `  y
) ) ) } ,  RR* ,  <  )
)
24 nmfnval 23379 . . 3  |-  ( T : ~H --> CC  ->  (
normfn `  T )  =  sup ( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( T `  y
) ) ) } ,  RR* ,  <  )
)
25243ad2ant1 978 . 2  |-  ( ( T : ~H --> CC  /\  A  e.  ~H  /\  ( normh `  A )  <_ 
1 )  ->  ( normfn `
 T )  =  sup ( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( T `  y
) ) ) } ,  RR* ,  <  )
)
2623, 25breqtrrd 4238 1  |-  ( ( T : ~H --> CC  /\  A  e.  ~H  /\  ( normh `  A )  <_ 
1 )  ->  ( abs `  ( T `  A ) )  <_ 
( normfn `  T )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   {cab 2422   E.wrex 2706    C_ wss 3320   class class class wbr 4212   -->wf 5450   ` cfv 5454   supcsup 7445   CCcc 8988   RRcr 8989   1c1 8991   RR*cxr 9119    < clt 9120    <_ cle 9121   abscabs 12039   ~Hchil 22422   normhcno 22426   normfncnmf 22454
This theorem is referenced by:  nmfnge0  23430  nmbdfnlbi  23552  nmcfnlbi  23555
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-hilex 22502
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-sup 7446  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-n0 10222  df-z 10283  df-uz 10489  df-rp 10613  df-seq 11324  df-exp 11383  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-nmfn 23348
  Copyright terms: Public domain W3C validator