MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmfval Unicode version

Theorem nmfval 18111
Description: The value of the norm function. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
nmfval.n  |-  N  =  ( norm `  W
)
nmfval.x  |-  X  =  ( Base `  W
)
nmfval.z  |-  .0.  =  ( 0g `  W )
nmfval.d  |-  D  =  ( dist `  W
)
Assertion
Ref Expression
nmfval  |-  N  =  ( x  e.  X  |->  ( x D  .0.  ) )
Distinct variable groups:    x, D    x, W    x, X    x,  .0.
Allowed substitution hint:    N( x)

Proof of Theorem nmfval
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 nmfval.n . 2  |-  N  =  ( norm `  W
)
2 fveq2 5525 . . . . . 6  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
3 nmfval.x . . . . . 6  |-  X  =  ( Base `  W
)
42, 3syl6eqr 2333 . . . . 5  |-  ( w  =  W  ->  ( Base `  w )  =  X )
5 fveq2 5525 . . . . . . 7  |-  ( w  =  W  ->  ( dist `  w )  =  ( dist `  W
) )
6 nmfval.d . . . . . . 7  |-  D  =  ( dist `  W
)
75, 6syl6eqr 2333 . . . . . 6  |-  ( w  =  W  ->  ( dist `  w )  =  D )
8 eqidd 2284 . . . . . 6  |-  ( w  =  W  ->  x  =  x )
9 fveq2 5525 . . . . . . 7  |-  ( w  =  W  ->  ( 0g `  w )  =  ( 0g `  W
) )
10 nmfval.z . . . . . . 7  |-  .0.  =  ( 0g `  W )
119, 10syl6eqr 2333 . . . . . 6  |-  ( w  =  W  ->  ( 0g `  w )  =  .0.  )
127, 8, 11oveq123d 5879 . . . . 5  |-  ( w  =  W  ->  (
x ( dist `  w
) ( 0g `  w ) )  =  ( x D  .0.  ) )
134, 12mpteq12dv 4098 . . . 4  |-  ( w  =  W  ->  (
x  e.  ( Base `  w )  |->  ( x ( dist `  w
) ( 0g `  w ) ) )  =  ( x  e.  X  |->  ( x D  .0.  ) ) )
14 df-nm 18105 . . . 4  |-  norm  =  ( w  e.  _V  |->  ( x  e.  ( Base `  w )  |->  ( x ( dist `  w
) ( 0g `  w ) ) ) )
15 eqid 2283 . . . . . 6  |-  ( x  e.  X  |->  ( x D  .0.  ) )  =  ( x  e.  X  |->  ( x D  .0.  ) )
16 df-ov 5861 . . . . . . . 8  |-  ( x D  .0.  )  =  ( D `  <. x ,  .0.  >. )
17 fvrn0 5550 . . . . . . . 8  |-  ( D `
 <. x ,  .0.  >.
)  e.  ( ran 
D  u.  { (/) } )
1816, 17eqeltri 2353 . . . . . . 7  |-  ( x D  .0.  )  e.  ( ran  D  u.  {
(/) } )
1918a1i 10 . . . . . 6  |-  ( x  e.  X  ->  (
x D  .0.  )  e.  ( ran  D  u.  {
(/) } ) )
2015, 19fmpti 5683 . . . . 5  |-  ( x  e.  X  |->  ( x D  .0.  ) ) : X --> ( ran 
D  u.  { (/) } )
21 fvex 5539 . . . . . 6  |-  ( Base `  W )  e.  _V
223, 21eqeltri 2353 . . . . 5  |-  X  e. 
_V
23 fvex 5539 . . . . . . . 8  |-  ( dist `  W )  e.  _V
246, 23eqeltri 2353 . . . . . . 7  |-  D  e. 
_V
2524rnex 4942 . . . . . 6  |-  ran  D  e.  _V
26 p0ex 4197 . . . . . 6  |-  { (/) }  e.  _V
2725, 26unex 4518 . . . . 5  |-  ( ran 
D  u.  { (/) } )  e.  _V
28 fex2 5401 . . . . 5  |-  ( ( ( x  e.  X  |->  ( x D  .0.  ) ) : X --> ( ran  D  u.  { (/)
} )  /\  X  e.  _V  /\  ( ran 
D  u.  { (/) } )  e.  _V )  ->  ( x  e.  X  |->  ( x D  .0.  ) )  e.  _V )
2920, 22, 27, 28mp3an 1277 . . . 4  |-  ( x  e.  X  |->  ( x D  .0.  ) )  e.  _V
3013, 14, 29fvmpt 5602 . . 3  |-  ( W  e.  _V  ->  ( norm `  W )  =  ( x  e.  X  |->  ( x D  .0.  ) ) )
31 fvprc 5519 . . . . 5  |-  ( -.  W  e.  _V  ->  (
norm `  W )  =  (/) )
32 mpt0 5371 . . . . 5  |-  ( x  e.  (/)  |->  ( x D  .0.  ) )  =  (/)
3331, 32syl6eqr 2333 . . . 4  |-  ( -.  W  e.  _V  ->  (
norm `  W )  =  ( x  e.  (/)  |->  ( x D  .0.  ) ) )
34 fvprc 5519 . . . . . 6  |-  ( -.  W  e.  _V  ->  (
Base `  W )  =  (/) )
353, 34syl5eq 2327 . . . . 5  |-  ( -.  W  e.  _V  ->  X  =  (/) )
36 mpteq1 4100 . . . . 5  |-  ( X  =  (/)  ->  ( x  e.  X  |->  ( x D  .0.  ) )  =  ( x  e.  (/)  |->  ( x D  .0.  ) ) )
3735, 36syl 15 . . . 4  |-  ( -.  W  e.  _V  ->  ( x  e.  X  |->  ( x D  .0.  )
)  =  ( x  e.  (/)  |->  ( x D  .0.  ) ) )
3833, 37eqtr4d 2318 . . 3  |-  ( -.  W  e.  _V  ->  (
norm `  W )  =  ( x  e.  X  |->  ( x D  .0.  ) ) )
3930, 38pm2.61i 156 . 2  |-  ( norm `  W )  =  ( x  e.  X  |->  ( x D  .0.  )
)
401, 39eqtri 2303 1  |-  N  =  ( x  e.  X  |->  ( x D  .0.  ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1623    e. wcel 1684   _Vcvv 2788    u. cun 3150   (/)c0 3455   {csn 3640   <.cop 3643    e. cmpt 4077   ran crn 4690   -->wf 5251   ` cfv 5255  (class class class)co 5858   Basecbs 13148   distcds 13217   0gc0g 13400   normcnm 18099
This theorem is referenced by:  nmval  18112  nmfval2  18113  nmpropd  18116  subgnm  18149  tngnm  18167  cnfldnm  18288  nmcn  18349
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-nm 18105
  Copyright terms: Public domain W3C validator