MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmfval Unicode version

Theorem nmfval 18500
Description: The value of the norm function. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
nmfval.n  |-  N  =  ( norm `  W
)
nmfval.x  |-  X  =  ( Base `  W
)
nmfval.z  |-  .0.  =  ( 0g `  W )
nmfval.d  |-  D  =  ( dist `  W
)
Assertion
Ref Expression
nmfval  |-  N  =  ( x  e.  X  |->  ( x D  .0.  ) )
Distinct variable groups:    x, D    x, W    x, X    x,  .0.
Allowed substitution hint:    N( x)

Proof of Theorem nmfval
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 nmfval.n . 2  |-  N  =  ( norm `  W
)
2 fveq2 5661 . . . . . 6  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
3 nmfval.x . . . . . 6  |-  X  =  ( Base `  W
)
42, 3syl6eqr 2430 . . . . 5  |-  ( w  =  W  ->  ( Base `  w )  =  X )
5 fveq2 5661 . . . . . . 7  |-  ( w  =  W  ->  ( dist `  w )  =  ( dist `  W
) )
6 nmfval.d . . . . . . 7  |-  D  =  ( dist `  W
)
75, 6syl6eqr 2430 . . . . . 6  |-  ( w  =  W  ->  ( dist `  w )  =  D )
8 eqidd 2381 . . . . . 6  |-  ( w  =  W  ->  x  =  x )
9 fveq2 5661 . . . . . . 7  |-  ( w  =  W  ->  ( 0g `  w )  =  ( 0g `  W
) )
10 nmfval.z . . . . . . 7  |-  .0.  =  ( 0g `  W )
119, 10syl6eqr 2430 . . . . . 6  |-  ( w  =  W  ->  ( 0g `  w )  =  .0.  )
127, 8, 11oveq123d 6034 . . . . 5  |-  ( w  =  W  ->  (
x ( dist `  w
) ( 0g `  w ) )  =  ( x D  .0.  ) )
134, 12mpteq12dv 4221 . . . 4  |-  ( w  =  W  ->  (
x  e.  ( Base `  w )  |->  ( x ( dist `  w
) ( 0g `  w ) ) )  =  ( x  e.  X  |->  ( x D  .0.  ) ) )
14 df-nm 18494 . . . 4  |-  norm  =  ( w  e.  _V  |->  ( x  e.  ( Base `  w )  |->  ( x ( dist `  w
) ( 0g `  w ) ) ) )
15 eqid 2380 . . . . . 6  |-  ( x  e.  X  |->  ( x D  .0.  ) )  =  ( x  e.  X  |->  ( x D  .0.  ) )
16 df-ov 6016 . . . . . . . 8  |-  ( x D  .0.  )  =  ( D `  <. x ,  .0.  >. )
17 fvrn0 5686 . . . . . . . 8  |-  ( D `
 <. x ,  .0.  >.
)  e.  ( ran 
D  u.  { (/) } )
1816, 17eqeltri 2450 . . . . . . 7  |-  ( x D  .0.  )  e.  ( ran  D  u.  {
(/) } )
1918a1i 11 . . . . . 6  |-  ( x  e.  X  ->  (
x D  .0.  )  e.  ( ran  D  u.  {
(/) } ) )
2015, 19fmpti 5824 . . . . 5  |-  ( x  e.  X  |->  ( x D  .0.  ) ) : X --> ( ran 
D  u.  { (/) } )
21 fvex 5675 . . . . . 6  |-  ( Base `  W )  e.  _V
223, 21eqeltri 2450 . . . . 5  |-  X  e. 
_V
23 fvex 5675 . . . . . . . 8  |-  ( dist `  W )  e.  _V
246, 23eqeltri 2450 . . . . . . 7  |-  D  e. 
_V
2524rnex 5066 . . . . . 6  |-  ran  D  e.  _V
26 p0ex 4320 . . . . . 6  |-  { (/) }  e.  _V
2725, 26unex 4640 . . . . 5  |-  ( ran 
D  u.  { (/) } )  e.  _V
28 fex2 5536 . . . . 5  |-  ( ( ( x  e.  X  |->  ( x D  .0.  ) ) : X --> ( ran  D  u.  { (/)
} )  /\  X  e.  _V  /\  ( ran 
D  u.  { (/) } )  e.  _V )  ->  ( x  e.  X  |->  ( x D  .0.  ) )  e.  _V )
2920, 22, 27, 28mp3an 1279 . . . 4  |-  ( x  e.  X  |->  ( x D  .0.  ) )  e.  _V
3013, 14, 29fvmpt 5738 . . 3  |-  ( W  e.  _V  ->  ( norm `  W )  =  ( x  e.  X  |->  ( x D  .0.  ) ) )
31 fvprc 5655 . . . . 5  |-  ( -.  W  e.  _V  ->  (
norm `  W )  =  (/) )
32 mpt0 5505 . . . . 5  |-  ( x  e.  (/)  |->  ( x D  .0.  ) )  =  (/)
3331, 32syl6eqr 2430 . . . 4  |-  ( -.  W  e.  _V  ->  (
norm `  W )  =  ( x  e.  (/)  |->  ( x D  .0.  ) ) )
34 fvprc 5655 . . . . . 6  |-  ( -.  W  e.  _V  ->  (
Base `  W )  =  (/) )
353, 34syl5eq 2424 . . . . 5  |-  ( -.  W  e.  _V  ->  X  =  (/) )
3635mpteq1d 4224 . . . 4  |-  ( -.  W  e.  _V  ->  ( x  e.  X  |->  ( x D  .0.  )
)  =  ( x  e.  (/)  |->  ( x D  .0.  ) ) )
3733, 36eqtr4d 2415 . . 3  |-  ( -.  W  e.  _V  ->  (
norm `  W )  =  ( x  e.  X  |->  ( x D  .0.  ) ) )
3830, 37pm2.61i 158 . 2  |-  ( norm `  W )  =  ( x  e.  X  |->  ( x D  .0.  )
)
391, 38eqtri 2400 1  |-  N  =  ( x  e.  X  |->  ( x D  .0.  ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1649    e. wcel 1717   _Vcvv 2892    u. cun 3254   (/)c0 3564   {csn 3750   <.cop 3753    e. cmpt 4200   ran crn 4812   -->wf 5383   ` cfv 5387  (class class class)co 6013   Basecbs 13389   distcds 13458   0gc0g 13643   normcnm 18488
This theorem is referenced by:  nmval  18501  nmfval2  18502  nmpropd  18505  subgnm  18538  tngnm  18556  cnfldnm  18677  nmcn  18739  ressnm  24016
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-rab 2651  df-v 2894  df-sbc 3098  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-br 4147  df-opab 4201  df-mpt 4202  df-id 4432  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-fv 5395  df-ov 6016  df-nm 18494
  Copyright terms: Public domain W3C validator