MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmfval2 Unicode version

Theorem nmfval2 18129
Description: The value of the norm function using a restricted metric. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
nmfval.n  |-  N  =  ( norm `  W
)
nmfval.x  |-  X  =  ( Base `  W
)
nmfval.z  |-  .0.  =  ( 0g `  W )
nmfval.d  |-  D  =  ( dist `  W
)
nmfval.e  |-  E  =  ( D  |`  ( X  X.  X ) )
Assertion
Ref Expression
nmfval2  |-  ( W  e.  Grp  ->  N  =  ( x  e.  X  |->  ( x E  .0.  ) ) )
Distinct variable groups:    x, D    x, W    x, X    x,  .0.
Allowed substitution hints:    E( x)    N( x)

Proof of Theorem nmfval2
StepHypRef Expression
1 nmfval.n . . 3  |-  N  =  ( norm `  W
)
2 nmfval.x . . 3  |-  X  =  ( Base `  W
)
3 nmfval.z . . 3  |-  .0.  =  ( 0g `  W )
4 nmfval.d . . 3  |-  D  =  ( dist `  W
)
51, 2, 3, 4nmfval 18127 . 2  |-  N  =  ( x  e.  X  |->  ( x D  .0.  ) )
6 nmfval.e . . . . 5  |-  E  =  ( D  |`  ( X  X.  X ) )
76oveqi 5887 . . . 4  |-  ( x E  .0.  )  =  ( x ( D  |`  ( X  X.  X
) )  .0.  )
8 id 19 . . . . 5  |-  ( x  e.  X  ->  x  e.  X )
92, 3grpidcl 14526 . . . . 5  |-  ( W  e.  Grp  ->  .0.  e.  X )
10 ovres 6003 . . . . 5  |-  ( ( x  e.  X  /\  .0.  e.  X )  -> 
( x ( D  |`  ( X  X.  X
) )  .0.  )  =  ( x D  .0.  ) )
118, 9, 10syl2anr 464 . . . 4  |-  ( ( W  e.  Grp  /\  x  e.  X )  ->  ( x ( D  |`  ( X  X.  X
) )  .0.  )  =  ( x D  .0.  ) )
127, 11syl5req 2341 . . 3  |-  ( ( W  e.  Grp  /\  x  e.  X )  ->  ( x D  .0.  )  =  ( x E  .0.  ) )
1312mpteq2dva 4122 . 2  |-  ( W  e.  Grp  ->  (
x  e.  X  |->  ( x D  .0.  )
)  =  ( x  e.  X  |->  ( x E  .0.  ) ) )
145, 13syl5eq 2340 1  |-  ( W  e.  Grp  ->  N  =  ( x  e.  X  |->  ( x E  .0.  ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696    e. cmpt 4093    X. cxp 4703    |` cres 4707   ` cfv 5271  (class class class)co 5874   Basecbs 13164   distcds 13233   0gc0g 13416   Grpcgrp 14378   normcnm 18115
This theorem is referenced by:  nmf2  18131  nmpropd2  18133
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5877  df-riota 6320  df-0g 13420  df-mnd 14383  df-grp 14505  df-nm 18121
  Copyright terms: Public domain W3C validator