MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmfval2 Unicode version

Theorem nmfval2 18599
Description: The value of the norm function using a restricted metric. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
nmfval.n  |-  N  =  ( norm `  W
)
nmfval.x  |-  X  =  ( Base `  W
)
nmfval.z  |-  .0.  =  ( 0g `  W )
nmfval.d  |-  D  =  ( dist `  W
)
nmfval.e  |-  E  =  ( D  |`  ( X  X.  X ) )
Assertion
Ref Expression
nmfval2  |-  ( W  e.  Grp  ->  N  =  ( x  e.  X  |->  ( x E  .0.  ) ) )
Distinct variable groups:    x, D    x, W    x, X    x,  .0.
Allowed substitution hints:    E( x)    N( x)

Proof of Theorem nmfval2
StepHypRef Expression
1 nmfval.n . . 3  |-  N  =  ( norm `  W
)
2 nmfval.x . . 3  |-  X  =  ( Base `  W
)
3 nmfval.z . . 3  |-  .0.  =  ( 0g `  W )
4 nmfval.d . . 3  |-  D  =  ( dist `  W
)
51, 2, 3, 4nmfval 18597 . 2  |-  N  =  ( x  e.  X  |->  ( x D  .0.  ) )
6 nmfval.e . . . . 5  |-  E  =  ( D  |`  ( X  X.  X ) )
76oveqi 6061 . . . 4  |-  ( x E  .0.  )  =  ( x ( D  |`  ( X  X.  X
) )  .0.  )
8 id 20 . . . . 5  |-  ( x  e.  X  ->  x  e.  X )
92, 3grpidcl 14796 . . . . 5  |-  ( W  e.  Grp  ->  .0.  e.  X )
10 ovres 6180 . . . . 5  |-  ( ( x  e.  X  /\  .0.  e.  X )  -> 
( x ( D  |`  ( X  X.  X
) )  .0.  )  =  ( x D  .0.  ) )
118, 9, 10syl2anr 465 . . . 4  |-  ( ( W  e.  Grp  /\  x  e.  X )  ->  ( x ( D  |`  ( X  X.  X
) )  .0.  )  =  ( x D  .0.  ) )
127, 11syl5req 2457 . . 3  |-  ( ( W  e.  Grp  /\  x  e.  X )  ->  ( x D  .0.  )  =  ( x E  .0.  ) )
1312mpteq2dva 4263 . 2  |-  ( W  e.  Grp  ->  (
x  e.  X  |->  ( x D  .0.  )
)  =  ( x  e.  X  |->  ( x E  .0.  ) ) )
145, 13syl5eq 2456 1  |-  ( W  e.  Grp  ->  N  =  ( x  e.  X  |->  ( x E  .0.  ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721    e. cmpt 4234    X. cxp 4843    |` cres 4847   ` cfv 5421  (class class class)co 6048   Basecbs 13432   distcds 13501   0gc0g 13686   Grpcgrp 14648   normcnm 18585
This theorem is referenced by:  nmf2  18601  nmpropd2  18603
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-fv 5429  df-ov 6051  df-riota 6516  df-0g 13690  df-mnd 14653  df-grp 14775  df-nm 18591
  Copyright terms: Public domain W3C validator