MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmlno0lem Unicode version

Theorem nmlno0lem 21371
Description: Lemma for nmlno0i 21372. (Contributed by NM, 28-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmlno0.3  |-  N  =  ( U normOp OLD W
)
nmlno0.0  |-  Z  =  ( U  0op  W
)
nmlno0.7  |-  L  =  ( U  LnOp  W
)
nmlno0lem.u  |-  U  e.  NrmCVec
nmlno0lem.w  |-  W  e.  NrmCVec
nmlno0lem.l  |-  T  e.  L
nmlno0lem.1  |-  X  =  ( BaseSet `  U )
nmlno0lem.2  |-  Y  =  ( BaseSet `  W )
nmlno0lem.r  |-  R  =  ( .s OLD `  U
)
nmlno0lem.s  |-  S  =  ( .s OLD `  W
)
nmlno0lem.p  |-  P  =  ( 0vec `  U
)
nmlno0lem.q  |-  Q  =  ( 0vec `  W
)
nmlno0lem.k  |-  K  =  ( normCV `  U )
nmlno0lem.m  |-  M  =  ( normCV `  W )
Assertion
Ref Expression
nmlno0lem  |-  ( ( N `  T )  =  0  <->  T  =  Z )

Proof of Theorem nmlno0lem
Dummy variables  y 
z  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmlno0lem.u . . . . . . . . . . . . . . 15  |-  U  e.  NrmCVec
2 nmlno0lem.1 . . . . . . . . . . . . . . . 16  |-  X  =  ( BaseSet `  U )
3 nmlno0lem.k . . . . . . . . . . . . . . . 16  |-  K  =  ( normCV `  U )
42, 3nvcl 21225 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  NrmCVec  /\  x  e.  X )  ->  ( K `  x )  e.  RR )
51, 4mpan 651 . . . . . . . . . . . . . 14  |-  ( x  e.  X  ->  ( K `  x )  e.  RR )
65recnd 8861 . . . . . . . . . . . . 13  |-  ( x  e.  X  ->  ( K `  x )  e.  CC )
76adantr 451 . . . . . . . . . . . 12  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( K `  x
)  e.  CC )
8 nmlno0lem.p . . . . . . . . . . . . . . . . 17  |-  P  =  ( 0vec `  U
)
92, 8, 3nvz 21235 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  NrmCVec  /\  x  e.  X )  ->  (
( K `  x
)  =  0  <->  x  =  P ) )
101, 9mpan 651 . . . . . . . . . . . . . . 15  |-  ( x  e.  X  ->  (
( K `  x
)  =  0  <->  x  =  P ) )
11 fveq2 5525 . . . . . . . . . . . . . . . 16  |-  ( x  =  P  ->  ( T `  x )  =  ( T `  P ) )
12 nmlno0lem.w . . . . . . . . . . . . . . . . 17  |-  W  e.  NrmCVec
13 nmlno0lem.l . . . . . . . . . . . . . . . . 17  |-  T  e.  L
14 nmlno0lem.2 . . . . . . . . . . . . . . . . . 18  |-  Y  =  ( BaseSet `  W )
15 nmlno0lem.q . . . . . . . . . . . . . . . . . 18  |-  Q  =  ( 0vec `  W
)
16 nmlno0.7 . . . . . . . . . . . . . . . . . 18  |-  L  =  ( U  LnOp  W
)
172, 14, 8, 15, 16lno0 21334 . . . . . . . . . . . . . . . . 17  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  ( T `  P )  =  Q )
181, 12, 13, 17mp3an 1277 . . . . . . . . . . . . . . . 16  |-  ( T `
 P )  =  Q
1911, 18syl6eq 2331 . . . . . . . . . . . . . . 15  |-  ( x  =  P  ->  ( T `  x )  =  Q )
2010, 19syl6bi 219 . . . . . . . . . . . . . 14  |-  ( x  e.  X  ->  (
( K `  x
)  =  0  -> 
( T `  x
)  =  Q ) )
2120necon3d 2484 . . . . . . . . . . . . 13  |-  ( x  e.  X  ->  (
( T `  x
)  =/=  Q  -> 
( K `  x
)  =/=  0 ) )
2221imp 418 . . . . . . . . . . . 12  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( K `  x
)  =/=  0 )
237, 22recne0d 9530 . . . . . . . . . . 11  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( 1  /  ( K `  x )
)  =/=  0 )
24 simpr 447 . . . . . . . . . . 11  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( T `  x
)  =/=  Q )
257, 22reccld 9529 . . . . . . . . . . . . . 14  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( 1  /  ( K `  x )
)  e.  CC )
262, 14, 16lnof 21333 . . . . . . . . . . . . . . . . 17  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  T : X --> Y )
271, 12, 13, 26mp3an 1277 . . . . . . . . . . . . . . . 16  |-  T : X
--> Y
2827ffvelrni 5664 . . . . . . . . . . . . . . 15  |-  ( x  e.  X  ->  ( T `  x )  e.  Y )
2928adantr 451 . . . . . . . . . . . . . 14  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( T `  x
)  e.  Y )
30 nmlno0lem.s . . . . . . . . . . . . . . . 16  |-  S  =  ( .s OLD `  W
)
3114, 30, 15nvmul0or 21210 . . . . . . . . . . . . . . 15  |-  ( ( W  e.  NrmCVec  /\  (
1  /  ( K `
 x ) )  e.  CC  /\  ( T `  x )  e.  Y )  ->  (
( ( 1  / 
( K `  x
) ) S ( T `  x ) )  =  Q  <->  ( (
1  /  ( K `
 x ) )  =  0  \/  ( T `  x )  =  Q ) ) )
3212, 31mp3an1 1264 . . . . . . . . . . . . . 14  |-  ( ( ( 1  /  ( K `  x )
)  e.  CC  /\  ( T `  x )  e.  Y )  -> 
( ( ( 1  /  ( K `  x ) ) S ( T `  x
) )  =  Q  <-> 
( ( 1  / 
( K `  x
) )  =  0  \/  ( T `  x )  =  Q ) ) )
3325, 29, 32syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( ( ( 1  /  ( K `  x ) ) S ( T `  x
) )  =  Q  <-> 
( ( 1  / 
( K `  x
) )  =  0  \/  ( T `  x )  =  Q ) ) )
3433necon3abid 2479 . . . . . . . . . . . 12  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( ( ( 1  /  ( K `  x ) ) S ( T `  x
) )  =/=  Q  <->  -.  ( ( 1  / 
( K `  x
) )  =  0  \/  ( T `  x )  =  Q ) ) )
35 neanior 2531 . . . . . . . . . . . 12  |-  ( ( ( 1  /  ( K `  x )
)  =/=  0  /\  ( T `  x
)  =/=  Q )  <->  -.  ( ( 1  / 
( K `  x
) )  =  0  \/  ( T `  x )  =  Q ) )
3634, 35syl6bbr 254 . . . . . . . . . . 11  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( ( ( 1  /  ( K `  x ) ) S ( T `  x
) )  =/=  Q  <->  ( ( 1  /  ( K `  x )
)  =/=  0  /\  ( T `  x
)  =/=  Q ) ) )
3723, 24, 36mpbir2and 888 . . . . . . . . . 10  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( ( 1  / 
( K `  x
) ) S ( T `  x ) )  =/=  Q )
3814, 30nvscl 21184 . . . . . . . . . . . . 13  |-  ( ( W  e.  NrmCVec  /\  (
1  /  ( K `
 x ) )  e.  CC  /\  ( T `  x )  e.  Y )  ->  (
( 1  /  ( K `  x )
) S ( T `
 x ) )  e.  Y )
3912, 38mp3an1 1264 . . . . . . . . . . . 12  |-  ( ( ( 1  /  ( K `  x )
)  e.  CC  /\  ( T `  x )  e.  Y )  -> 
( ( 1  / 
( K `  x
) ) S ( T `  x ) )  e.  Y )
4025, 29, 39syl2anc 642 . . . . . . . . . . 11  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( ( 1  / 
( K `  x
) ) S ( T `  x ) )  e.  Y )
41 nmlno0lem.m . . . . . . . . . . . 12  |-  M  =  ( normCV `  W )
4214, 15, 41nvgt0 21241 . . . . . . . . . . 11  |-  ( ( W  e.  NrmCVec  /\  (
( 1  /  ( K `  x )
) S ( T `
 x ) )  e.  Y )  -> 
( ( ( 1  /  ( K `  x ) ) S ( T `  x
) )  =/=  Q  <->  0  <  ( M `  ( ( 1  / 
( K `  x
) ) S ( T `  x ) ) ) ) )
4312, 40, 42sylancr 644 . . . . . . . . . 10  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( ( ( 1  /  ( K `  x ) ) S ( T `  x
) )  =/=  Q  <->  0  <  ( M `  ( ( 1  / 
( K `  x
) ) S ( T `  x ) ) ) ) )
4437, 43mpbid 201 . . . . . . . . 9  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
0  <  ( M `  ( ( 1  / 
( K `  x
) ) S ( T `  x ) ) ) )
4544ex 423 . . . . . . . 8  |-  ( x  e.  X  ->  (
( T `  x
)  =/=  Q  -> 
0  <  ( M `  ( ( 1  / 
( K `  x
) ) S ( T `  x ) ) ) ) )
4645adantl 452 . . . . . . 7  |-  ( ( ( N `  T
)  =  0  /\  x  e.  X )  ->  ( ( T `
 x )  =/= 
Q  ->  0  <  ( M `  ( ( 1  /  ( K `
 x ) ) S ( T `  x ) ) ) ) )
4714, 41nmosetre 21342 . . . . . . . . . . . . . 14  |-  ( ( W  e.  NrmCVec  /\  T : X --> Y )  ->  { y  |  E. z  e.  X  (
( K `  z
)  <_  1  /\  y  =  ( M `  ( T `  z
) ) ) } 
C_  RR )
4812, 27, 47mp2an 653 . . . . . . . . . . . . 13  |-  { y  |  E. z  e.  X  ( ( K `
 z )  <_ 
1  /\  y  =  ( M `  ( T `
 z ) ) ) }  C_  RR
49 ressxr 8876 . . . . . . . . . . . . 13  |-  RR  C_  RR*
5048, 49sstri 3188 . . . . . . . . . . . 12  |-  { y  |  E. z  e.  X  ( ( K `
 z )  <_ 
1  /\  y  =  ( M `  ( T `
 z ) ) ) }  C_  RR*
51 simpl 443 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  ->  x  e.  X )
52 nmlno0lem.r . . . . . . . . . . . . . . . . 17  |-  R  =  ( .s OLD `  U
)
532, 52nvscl 21184 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  NrmCVec  /\  (
1  /  ( K `
 x ) )  e.  CC  /\  x  e.  X )  ->  (
( 1  /  ( K `  x )
) R x )  e.  X )
541, 53mp3an1 1264 . . . . . . . . . . . . . . 15  |-  ( ( ( 1  /  ( K `  x )
)  e.  CC  /\  x  e.  X )  ->  ( ( 1  / 
( K `  x
) ) R x )  e.  X )
5525, 51, 54syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( ( 1  / 
( K `  x
) ) R x )  e.  X )
5619necon3i 2485 . . . . . . . . . . . . . . . . 17  |-  ( ( T `  x )  =/=  Q  ->  x  =/=  P )
572, 52, 8, 3nv1 21242 . . . . . . . . . . . . . . . . . 18  |-  ( ( U  e.  NrmCVec  /\  x  e.  X  /\  x  =/=  P )  ->  ( K `  ( (
1  /  ( K `
 x ) ) R x ) )  =  1 )
581, 57mp3an1 1264 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  X  /\  x  =/=  P )  -> 
( K `  (
( 1  /  ( K `  x )
) R x ) )  =  1 )
5956, 58sylan2 460 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( K `  (
( 1  /  ( K `  x )
) R x ) )  =  1 )
60 1re 8837 . . . . . . . . . . . . . . . 16  |-  1  e.  RR
6159, 60syl6eqel 2371 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( K `  (
( 1  /  ( K `  x )
) R x ) )  e.  RR )
62 eqle 8923 . . . . . . . . . . . . . . 15  |-  ( ( ( K `  (
( 1  /  ( K `  x )
) R x ) )  e.  RR  /\  ( K `  ( ( 1  /  ( K `
 x ) ) R x ) )  =  1 )  -> 
( K `  (
( 1  /  ( K `  x )
) R x ) )  <_  1 )
6361, 59, 62syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( K `  (
( 1  /  ( K `  x )
) R x ) )  <_  1 )
641, 12, 133pm3.2i 1130 . . . . . . . . . . . . . . . . . 18  |-  ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )
652, 52, 30, 16lnomul 21338 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  (
( 1  /  ( K `  x )
)  e.  CC  /\  x  e.  X )
)  ->  ( T `  ( ( 1  / 
( K `  x
) ) R x ) )  =  ( ( 1  /  ( K `  x )
) S ( T `
 x ) ) )
6664, 65mpan 651 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 1  /  ( K `  x )
)  e.  CC  /\  x  e.  X )  ->  ( T `  (
( 1  /  ( K `  x )
) R x ) )  =  ( ( 1  /  ( K `
 x ) ) S ( T `  x ) ) )
6725, 51, 66syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( T `  (
( 1  /  ( K `  x )
) R x ) )  =  ( ( 1  /  ( K `
 x ) ) S ( T `  x ) ) )
6867eqcomd 2288 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( ( 1  / 
( K `  x
) ) S ( T `  x ) )  =  ( T `
 ( ( 1  /  ( K `  x ) ) R x ) ) )
6968fveq2d 5529 . . . . . . . . . . . . . 14  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( M `  (
( 1  /  ( K `  x )
) S ( T `
 x ) ) )  =  ( M `
 ( T `  ( ( 1  / 
( K `  x
) ) R x ) ) ) )
70 fveq2 5525 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( ( 1  /  ( K `  x ) ) R x )  ->  ( K `  z )  =  ( K `  ( ( 1  / 
( K `  x
) ) R x ) ) )
7170breq1d 4033 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( ( 1  /  ( K `  x ) ) R x )  ->  (
( K `  z
)  <_  1  <->  ( K `  ( ( 1  / 
( K `  x
) ) R x ) )  <_  1
) )
72 fveq2 5525 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( ( 1  /  ( K `  x ) ) R x )  ->  ( T `  z )  =  ( T `  ( ( 1  / 
( K `  x
) ) R x ) ) )
7372fveq2d 5529 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( ( 1  /  ( K `  x ) ) R x )  ->  ( M `  ( T `  z ) )  =  ( M `  ( T `  ( (
1  /  ( K `
 x ) ) R x ) ) ) )
7473eqeq2d 2294 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( ( 1  /  ( K `  x ) ) R x )  ->  (
( M `  (
( 1  /  ( K `  x )
) S ( T `
 x ) ) )  =  ( M `
 ( T `  z ) )  <->  ( M `  ( ( 1  / 
( K `  x
) ) S ( T `  x ) ) )  =  ( M `  ( T `
 ( ( 1  /  ( K `  x ) ) R x ) ) ) ) )
7571, 74anbi12d 691 . . . . . . . . . . . . . . 15  |-  ( z  =  ( ( 1  /  ( K `  x ) ) R x )  ->  (
( ( K `  z )  <_  1  /\  ( M `  (
( 1  /  ( K `  x )
) S ( T `
 x ) ) )  =  ( M `
 ( T `  z ) ) )  <-> 
( ( K `  ( ( 1  / 
( K `  x
) ) R x ) )  <_  1  /\  ( M `  (
( 1  /  ( K `  x )
) S ( T `
 x ) ) )  =  ( M `
 ( T `  ( ( 1  / 
( K `  x
) ) R x ) ) ) ) ) )
7675rspcev 2884 . . . . . . . . . . . . . 14  |-  ( ( ( ( 1  / 
( K `  x
) ) R x )  e.  X  /\  ( ( K `  ( ( 1  / 
( K `  x
) ) R x ) )  <_  1  /\  ( M `  (
( 1  /  ( K `  x )
) S ( T `
 x ) ) )  =  ( M `
 ( T `  ( ( 1  / 
( K `  x
) ) R x ) ) ) ) )  ->  E. z  e.  X  ( ( K `  z )  <_  1  /\  ( M `
 ( ( 1  /  ( K `  x ) ) S ( T `  x
) ) )  =  ( M `  ( T `  z )
) ) )
7755, 63, 69, 76syl12anc 1180 . . . . . . . . . . . . 13  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  ->  E. z  e.  X  ( ( K `  z )  <_  1  /\  ( M `  (
( 1  /  ( K `  x )
) S ( T `
 x ) ) )  =  ( M `
 ( T `  z ) ) ) )
78 fvex 5539 . . . . . . . . . . . . . 14  |-  ( M `
 ( ( 1  /  ( K `  x ) ) S ( T `  x
) ) )  e. 
_V
79 eqeq1 2289 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( M `  ( ( 1  / 
( K `  x
) ) S ( T `  x ) ) )  ->  (
y  =  ( M `
 ( T `  z ) )  <->  ( M `  ( ( 1  / 
( K `  x
) ) S ( T `  x ) ) )  =  ( M `  ( T `
 z ) ) ) )
8079anbi2d 684 . . . . . . . . . . . . . . 15  |-  ( y  =  ( M `  ( ( 1  / 
( K `  x
) ) S ( T `  x ) ) )  ->  (
( ( K `  z )  <_  1  /\  y  =  ( M `  ( T `  z ) ) )  <-> 
( ( K `  z )  <_  1  /\  ( M `  (
( 1  /  ( K `  x )
) S ( T `
 x ) ) )  =  ( M `
 ( T `  z ) ) ) ) )
8180rexbidv 2564 . . . . . . . . . . . . . 14  |-  ( y  =  ( M `  ( ( 1  / 
( K `  x
) ) S ( T `  x ) ) )  ->  ( E. z  e.  X  ( ( K `  z )  <_  1  /\  y  =  ( M `  ( T `  z ) ) )  <->  E. z  e.  X  ( ( K `  z )  <_  1  /\  ( M `  (
( 1  /  ( K `  x )
) S ( T `
 x ) ) )  =  ( M `
 ( T `  z ) ) ) ) )
8278, 81elab 2914 . . . . . . . . . . . . 13  |-  ( ( M `  ( ( 1  /  ( K `
 x ) ) S ( T `  x ) ) )  e.  { y  |  E. z  e.  X  ( ( K `  z )  <_  1  /\  y  =  ( M `  ( T `  z ) ) ) }  <->  E. z  e.  X  ( ( K `  z )  <_  1  /\  ( M `  (
( 1  /  ( K `  x )
) S ( T `
 x ) ) )  =  ( M `
 ( T `  z ) ) ) )
8377, 82sylibr 203 . . . . . . . . . . . 12  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( M `  (
( 1  /  ( K `  x )
) S ( T `
 x ) ) )  e.  { y  |  E. z  e.  X  ( ( K `
 z )  <_ 
1  /\  y  =  ( M `  ( T `
 z ) ) ) } )
84 supxrub 10643 . . . . . . . . . . . 12  |-  ( ( { y  |  E. z  e.  X  (
( K `  z
)  <_  1  /\  y  =  ( M `  ( T `  z
) ) ) } 
C_  RR*  /\  ( M `
 ( ( 1  /  ( K `  x ) ) S ( T `  x
) ) )  e. 
{ y  |  E. z  e.  X  (
( K `  z
)  <_  1  /\  y  =  ( M `  ( T `  z
) ) ) } )  ->  ( M `  ( ( 1  / 
( K `  x
) ) S ( T `  x ) ) )  <_  sup ( { y  |  E. z  e.  X  (
( K `  z
)  <_  1  /\  y  =  ( M `  ( T `  z
) ) ) } ,  RR* ,  <  )
)
8550, 83, 84sylancr 644 . . . . . . . . . . 11  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( M `  (
( 1  /  ( K `  x )
) S ( T `
 x ) ) )  <_  sup ( { y  |  E. z  e.  X  (
( K `  z
)  <_  1  /\  y  =  ( M `  ( T `  z
) ) ) } ,  RR* ,  <  )
)
8685adantll 694 . . . . . . . . . 10  |-  ( ( ( ( N `  T )  =  0  /\  x  e.  X
)  /\  ( T `  x )  =/=  Q
)  ->  ( M `  ( ( 1  / 
( K `  x
) ) S ( T `  x ) ) )  <_  sup ( { y  |  E. z  e.  X  (
( K `  z
)  <_  1  /\  y  =  ( M `  ( T `  z
) ) ) } ,  RR* ,  <  )
)
87 nmlno0.3 . . . . . . . . . . . . . . 15  |-  N  =  ( U normOp OLD W
)
882, 14, 3, 41, 87nmooval 21341 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X
--> Y )  ->  ( N `  T )  =  sup ( { y  |  E. z  e.  X  ( ( K `
 z )  <_ 
1  /\  y  =  ( M `  ( T `
 z ) ) ) } ,  RR* ,  <  ) )
891, 12, 27, 88mp3an 1277 . . . . . . . . . . . . 13  |-  ( N `
 T )  =  sup ( { y  |  E. z  e.  X  ( ( K `
 z )  <_ 
1  /\  y  =  ( M `  ( T `
 z ) ) ) } ,  RR* ,  <  )
9089eqeq1i 2290 . . . . . . . . . . . 12  |-  ( ( N `  T )  =  0  <->  sup ( { y  |  E. z  e.  X  (
( K `  z
)  <_  1  /\  y  =  ( M `  ( T `  z
) ) ) } ,  RR* ,  <  )  =  0 )
9190biimpi 186 . . . . . . . . . . 11  |-  ( ( N `  T )  =  0  ->  sup ( { y  |  E. z  e.  X  (
( K `  z
)  <_  1  /\  y  =  ( M `  ( T `  z
) ) ) } ,  RR* ,  <  )  =  0 )
9291ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ( N `  T )  =  0  /\  x  e.  X
)  /\  ( T `  x )  =/=  Q
)  ->  sup ( { y  |  E. z  e.  X  (
( K `  z
)  <_  1  /\  y  =  ( M `  ( T `  z
) ) ) } ,  RR* ,  <  )  =  0 )
9386, 92breqtrd 4047 . . . . . . . . 9  |-  ( ( ( ( N `  T )  =  0  /\  x  e.  X
)  /\  ( T `  x )  =/=  Q
)  ->  ( M `  ( ( 1  / 
( K `  x
) ) S ( T `  x ) ) )  <_  0
)
9414, 41nvcl 21225 . . . . . . . . . . . 12  |-  ( ( W  e.  NrmCVec  /\  (
( 1  /  ( K `  x )
) S ( T `
 x ) )  e.  Y )  -> 
( M `  (
( 1  /  ( K `  x )
) S ( T `
 x ) ) )  e.  RR )
9512, 40, 94sylancr 644 . . . . . . . . . . 11  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( M `  (
( 1  /  ( K `  x )
) S ( T `
 x ) ) )  e.  RR )
96 0re 8838 . . . . . . . . . . 11  |-  0  e.  RR
97 lenlt 8901 . . . . . . . . . . 11  |-  ( ( ( M `  (
( 1  /  ( K `  x )
) S ( T `
 x ) ) )  e.  RR  /\  0  e.  RR )  ->  ( ( M `  ( ( 1  / 
( K `  x
) ) S ( T `  x ) ) )  <_  0  <->  -.  0  <  ( M `
 ( ( 1  /  ( K `  x ) ) S ( T `  x
) ) ) ) )
9895, 96, 97sylancl 643 . . . . . . . . . 10  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( ( M `  ( ( 1  / 
( K `  x
) ) S ( T `  x ) ) )  <_  0  <->  -.  0  <  ( M `
 ( ( 1  /  ( K `  x ) ) S ( T `  x
) ) ) ) )
9998adantll 694 . . . . . . . . 9  |-  ( ( ( ( N `  T )  =  0  /\  x  e.  X
)  /\  ( T `  x )  =/=  Q
)  ->  ( ( M `  ( (
1  /  ( K `
 x ) ) S ( T `  x ) ) )  <_  0  <->  -.  0  <  ( M `  (
( 1  /  ( K `  x )
) S ( T `
 x ) ) ) ) )
10093, 99mpbid 201 . . . . . . . 8  |-  ( ( ( ( N `  T )  =  0  /\  x  e.  X
)  /\  ( T `  x )  =/=  Q
)  ->  -.  0  <  ( M `  (
( 1  /  ( K `  x )
) S ( T `
 x ) ) ) )
101100ex 423 . . . . . . 7  |-  ( ( ( N `  T
)  =  0  /\  x  e.  X )  ->  ( ( T `
 x )  =/= 
Q  ->  -.  0  <  ( M `  (
( 1  /  ( K `  x )
) S ( T `
 x ) ) ) ) )
10246, 101pm2.65d 166 . . . . . 6  |-  ( ( ( N `  T
)  =  0  /\  x  e.  X )  ->  -.  ( T `  x )  =/=  Q
)
103 nne 2450 . . . . . 6  |-  ( -.  ( T `  x
)  =/=  Q  <->  ( T `  x )  =  Q )
104102, 103sylib 188 . . . . 5  |-  ( ( ( N `  T
)  =  0  /\  x  e.  X )  ->  ( T `  x )  =  Q )
105 nmlno0.0 . . . . . . . 8  |-  Z  =  ( U  0op  W
)
1062, 15, 1050oval 21366 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  x  e.  X )  ->  ( Z `  x )  =  Q )
1071, 12, 106mp3an12 1267 . . . . . 6  |-  ( x  e.  X  ->  ( Z `  x )  =  Q )
108107adantl 452 . . . . 5  |-  ( ( ( N `  T
)  =  0  /\  x  e.  X )  ->  ( Z `  x )  =  Q )
109104, 108eqtr4d 2318 . . . 4  |-  ( ( ( N `  T
)  =  0  /\  x  e.  X )  ->  ( T `  x )  =  ( Z `  x ) )
110109ralrimiva 2626 . . 3  |-  ( ( N `  T )  =  0  ->  A. x  e.  X  ( T `  x )  =  ( Z `  x ) )
111 ffn 5389 . . . . 5  |-  ( T : X --> Y  ->  T  Fn  X )
11227, 111ax-mp 8 . . . 4  |-  T  Fn  X
1132, 14, 1050oo 21367 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  Z : X --> Y )
1141, 12, 113mp2an 653 . . . . 5  |-  Z : X
--> Y
115 ffn 5389 . . . . 5  |-  ( Z : X --> Y  ->  Z  Fn  X )
116114, 115ax-mp 8 . . . 4  |-  Z  Fn  X
117 eqfnfv 5622 . . . 4  |-  ( ( T  Fn  X  /\  Z  Fn  X )  ->  ( T  =  Z  <->  A. x  e.  X  ( T `  x )  =  ( Z `  x ) ) )
118112, 116, 117mp2an 653 . . 3  |-  ( T  =  Z  <->  A. x  e.  X  ( T `  x )  =  ( Z `  x ) )
119110, 118sylibr 203 . 2  |-  ( ( N `  T )  =  0  ->  T  =  Z )
120 fveq2 5525 . . 3  |-  ( T  =  Z  ->  ( N `  T )  =  ( N `  Z ) )
12187, 105nmoo0 21369 . . . 4  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( N `  Z )  =  0 )
1221, 12, 121mp2an 653 . . 3  |-  ( N `
 Z )  =  0
123120, 122syl6eq 2331 . 2  |-  ( T  =  Z  ->  ( N `  T )  =  0 )
124119, 123impbii 180 1  |-  ( ( N `  T )  =  0  <->  T  =  Z )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   {cab 2269    =/= wne 2446   A.wral 2543   E.wrex 2544    C_ wss 3152   class class class wbr 4023    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858   supcsup 7193   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738   RR*cxr 8866    < clt 8867    <_ cle 8868    / cdiv 9423   NrmCVeccnv 21140   BaseSetcba 21142   .s
OLDcns 21143   0veccn0v 21144   normCVcnmcv 21146    LnOp clno 21318   normOp OLDcnmoo 21319    0op c0o 21321
This theorem is referenced by:  nmlno0i  21372
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-grpo 20858  df-gid 20859  df-ginv 20860  df-ablo 20949  df-vc 21102  df-nv 21148  df-va 21151  df-ba 21152  df-sm 21153  df-0v 21154  df-nmcv 21156  df-lno 21322  df-nmoo 21323  df-0o 21325
  Copyright terms: Public domain W3C validator