MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmobndseqi Unicode version

Theorem nmobndseqi 21357
Description: A bounded sequence determines a bounded operator. (Contributed by NM, 18-Jan-2008.) (Revised by Mario Carneiro, 7-Apr-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoubi.1  |-  X  =  ( BaseSet `  U )
nmoubi.y  |-  Y  =  ( BaseSet `  W )
nmoubi.l  |-  L  =  ( normCV `  U )
nmoubi.m  |-  M  =  ( normCV `  W )
nmoubi.3  |-  N  =  ( U normOp OLD W
)
nmoubi.u  |-  U  e.  NrmCVec
nmoubi.w  |-  W  e.  NrmCVec
Assertion
Ref Expression
nmobndseqi  |-  ( ( T : X --> Y  /\  A. f ( ( f : NN --> X  /\  A. k  e.  NN  ( L `  ( f `  k ) )  <_ 
1 )  ->  E. k  e.  NN  ( M `  ( T `  ( f `
 k ) ) )  <_  k )
)  ->  ( N `  T )  e.  RR )
Distinct variable groups:    f, k, L    k, Y    f, M, k    T, f, k    f, X, k    k, N
Allowed substitution hints:    U( f, k)    N( f)    W( f, k)    Y( f)

Proof of Theorem nmobndseqi
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 impexp 433 . . . . . 6  |-  ( ( ( f : NN --> X  /\  A. k  e.  NN  ( L `  ( f `  k
) )  <_  1
)  ->  E. k  e.  NN  ( M `  ( T `  ( f `
 k ) ) )  <_  k )  <->  ( f : NN --> X  -> 
( A. k  e.  NN  ( L `  ( f `  k
) )  <_  1  ->  E. k  e.  NN  ( M `  ( T `
 ( f `  k ) ) )  <_  k ) ) )
2 r19.35 2687 . . . . . . 7  |-  ( E. k  e.  NN  (
( L `  (
f `  k )
)  <_  1  ->  ( M `  ( T `
 ( f `  k ) ) )  <_  k )  <->  ( A. k  e.  NN  ( L `  ( f `  k ) )  <_ 
1  ->  E. k  e.  NN  ( M `  ( T `  ( f `
 k ) ) )  <_  k )
)
32imbi2i 303 . . . . . 6  |-  ( ( f : NN --> X  ->  E. k  e.  NN  ( ( L `  ( f `  k
) )  <_  1  ->  ( M `  ( T `  ( f `  k ) ) )  <_  k ) )  <-> 
( f : NN --> X  ->  ( A. k  e.  NN  ( L `  ( f `  k
) )  <_  1  ->  E. k  e.  NN  ( M `  ( T `
 ( f `  k ) ) )  <_  k ) ) )
41, 3bitr4i 243 . . . . 5  |-  ( ( ( f : NN --> X  /\  A. k  e.  NN  ( L `  ( f `  k
) )  <_  1
)  ->  E. k  e.  NN  ( M `  ( T `  ( f `
 k ) ) )  <_  k )  <->  ( f : NN --> X  ->  E. k  e.  NN  ( ( L `  ( f `  k
) )  <_  1  ->  ( M `  ( T `  ( f `  k ) ) )  <_  k ) ) )
54albii 1553 . . . 4  |-  ( A. f ( ( f : NN --> X  /\  A. k  e.  NN  ( L `  ( f `  k ) )  <_ 
1 )  ->  E. k  e.  NN  ( M `  ( T `  ( f `
 k ) ) )  <_  k )  <->  A. f ( f : NN --> X  ->  E. k  e.  NN  ( ( L `
 ( f `  k ) )  <_ 
1  ->  ( M `  ( T `  (
f `  k )
) )  <_  k
) ) )
6 nmoubi.1 . . . . . . . . 9  |-  X  =  ( BaseSet `  U )
7 fvex 5539 . . . . . . . . 9  |-  ( BaseSet `  U )  e.  _V
86, 7eqeltri 2353 . . . . . . . 8  |-  X  e. 
_V
9 nnenom 11042 . . . . . . . 8  |-  NN  ~~  om
10 fveq2 5525 . . . . . . . . . . 11  |-  ( y  =  ( f `  k )  ->  ( L `  y )  =  ( L `  ( f `  k
) ) )
1110breq1d 4033 . . . . . . . . . 10  |-  ( y  =  ( f `  k )  ->  (
( L `  y
)  <_  1  <->  ( L `  ( f `  k
) )  <_  1
) )
12 fveq2 5525 . . . . . . . . . . . 12  |-  ( y  =  ( f `  k )  ->  ( T `  y )  =  ( T `  ( f `  k
) ) )
1312fveq2d 5529 . . . . . . . . . . 11  |-  ( y  =  ( f `  k )  ->  ( M `  ( T `  y ) )  =  ( M `  ( T `  ( f `  k ) ) ) )
1413breq1d 4033 . . . . . . . . . 10  |-  ( y  =  ( f `  k )  ->  (
( M `  ( T `  y )
)  <_  k  <->  ( M `  ( T `  (
f `  k )
) )  <_  k
) )
1511, 14imbi12d 311 . . . . . . . . 9  |-  ( y  =  ( f `  k )  ->  (
( ( L `  y )  <_  1  ->  ( M `  ( T `  y )
)  <_  k )  <->  ( ( L `  (
f `  k )
)  <_  1  ->  ( M `  ( T `
 ( f `  k ) ) )  <_  k ) ) )
1615notbid 285 . . . . . . . 8  |-  ( y  =  ( f `  k )  ->  ( -.  ( ( L `  y )  <_  1  ->  ( M `  ( T `  y )
)  <_  k )  <->  -.  ( ( L `  ( f `  k
) )  <_  1  ->  ( M `  ( T `  ( f `  k ) ) )  <_  k ) ) )
178, 9, 16axcc4 8065 . . . . . . 7  |-  ( A. k  e.  NN  E. y  e.  X  -.  (
( L `  y
)  <_  1  ->  ( M `  ( T `
 y ) )  <_  k )  ->  E. f ( f : NN --> X  /\  A. k  e.  NN  -.  ( ( L `  ( f `  k
) )  <_  1  ->  ( M `  ( T `  ( f `  k ) ) )  <_  k ) ) )
1817con3i 127 . . . . . 6  |-  ( -. 
E. f ( f : NN --> X  /\  A. k  e.  NN  -.  ( ( L `  ( f `  k
) )  <_  1  ->  ( M `  ( T `  ( f `  k ) ) )  <_  k ) )  ->  -.  A. k  e.  NN  E. y  e.  X  -.  ( ( L `  y )  <_  1  ->  ( M `  ( T `  y ) )  <_ 
k ) )
19 dfrex2 2556 . . . . . . . . 9  |-  ( E. k  e.  NN  (
( L `  (
f `  k )
)  <_  1  ->  ( M `  ( T `
 ( f `  k ) ) )  <_  k )  <->  -.  A. k  e.  NN  -.  ( ( L `  ( f `
 k ) )  <_  1  ->  ( M `  ( T `  ( f `  k
) ) )  <_ 
k ) )
2019imbi2i 303 . . . . . . . 8  |-  ( ( f : NN --> X  ->  E. k  e.  NN  ( ( L `  ( f `  k
) )  <_  1  ->  ( M `  ( T `  ( f `  k ) ) )  <_  k ) )  <-> 
( f : NN --> X  ->  -.  A. k  e.  NN  -.  ( ( L `  ( f `
 k ) )  <_  1  ->  ( M `  ( T `  ( f `  k
) ) )  <_ 
k ) ) )
2120albii 1553 . . . . . . 7  |-  ( A. f ( f : NN --> X  ->  E. k  e.  NN  ( ( L `
 ( f `  k ) )  <_ 
1  ->  ( M `  ( T `  (
f `  k )
) )  <_  k
) )  <->  A. f
( f : NN --> X  ->  -.  A. k  e.  NN  -.  ( ( L `  ( f `
 k ) )  <_  1  ->  ( M `  ( T `  ( f `  k
) ) )  <_ 
k ) ) )
22 alinexa 1565 . . . . . . 7  |-  ( A. f ( f : NN --> X  ->  -.  A. k  e.  NN  -.  ( ( L `  ( f `  k
) )  <_  1  ->  ( M `  ( T `  ( f `  k ) ) )  <_  k ) )  <->  -.  E. f ( f : NN --> X  /\  A. k  e.  NN  -.  ( ( L `  ( f `  k
) )  <_  1  ->  ( M `  ( T `  ( f `  k ) ) )  <_  k ) ) )
2321, 22bitri 240 . . . . . 6  |-  ( A. f ( f : NN --> X  ->  E. k  e.  NN  ( ( L `
 ( f `  k ) )  <_ 
1  ->  ( M `  ( T `  (
f `  k )
) )  <_  k
) )  <->  -.  E. f
( f : NN --> X  /\  A. k  e.  NN  -.  ( ( L `  ( f `
 k ) )  <_  1  ->  ( M `  ( T `  ( f `  k
) ) )  <_ 
k ) ) )
24 dfral2 2555 . . . . . . . 8  |-  ( A. y  e.  X  (
( L `  y
)  <_  1  ->  ( M `  ( T `
 y ) )  <_  k )  <->  -.  E. y  e.  X  -.  (
( L `  y
)  <_  1  ->  ( M `  ( T `
 y ) )  <_  k ) )
2524rexbii 2568 . . . . . . 7  |-  ( E. k  e.  NN  A. y  e.  X  (
( L `  y
)  <_  1  ->  ( M `  ( T `
 y ) )  <_  k )  <->  E. k  e.  NN  -.  E. y  e.  X  -.  (
( L `  y
)  <_  1  ->  ( M `  ( T `
 y ) )  <_  k ) )
26 rexnal 2554 . . . . . . 7  |-  ( E. k  e.  NN  -.  E. y  e.  X  -.  ( ( L `  y )  <_  1  ->  ( M `  ( T `  y )
)  <_  k )  <->  -. 
A. k  e.  NN  E. y  e.  X  -.  ( ( L `  y )  <_  1  ->  ( M `  ( T `  y )
)  <_  k )
)
2725, 26bitri 240 . . . . . 6  |-  ( E. k  e.  NN  A. y  e.  X  (
( L `  y
)  <_  1  ->  ( M `  ( T `
 y ) )  <_  k )  <->  -.  A. k  e.  NN  E. y  e.  X  -.  ( ( L `  y )  <_  1  ->  ( M `  ( T `  y ) )  <_ 
k ) )
2818, 23, 273imtr4i 257 . . . . 5  |-  ( A. f ( f : NN --> X  ->  E. k  e.  NN  ( ( L `
 ( f `  k ) )  <_ 
1  ->  ( M `  ( T `  (
f `  k )
) )  <_  k
) )  ->  E. k  e.  NN  A. y  e.  X  ( ( L `
 y )  <_ 
1  ->  ( M `  ( T `  y
) )  <_  k
) )
29 nnre 9753 . . . . . . 7  |-  ( k  e.  NN  ->  k  e.  RR )
3029anim1i 551 . . . . . 6  |-  ( ( k  e.  NN  /\  A. y  e.  X  ( ( L `  y
)  <_  1  ->  ( M `  ( T `
 y ) )  <_  k ) )  ->  ( k  e.  RR  /\  A. y  e.  X  ( ( L `  y )  <_  1  ->  ( M `  ( T `  y
) )  <_  k
) ) )
3130reximi2 2649 . . . . 5  |-  ( E. k  e.  NN  A. y  e.  X  (
( L `  y
)  <_  1  ->  ( M `  ( T `
 y ) )  <_  k )  ->  E. k  e.  RR  A. y  e.  X  ( ( L `  y
)  <_  1  ->  ( M `  ( T `
 y ) )  <_  k ) )
3228, 31syl 15 . . . 4  |-  ( A. f ( f : NN --> X  ->  E. k  e.  NN  ( ( L `
 ( f `  k ) )  <_ 
1  ->  ( M `  ( T `  (
f `  k )
) )  <_  k
) )  ->  E. k  e.  RR  A. y  e.  X  ( ( L `
 y )  <_ 
1  ->  ( M `  ( T `  y
) )  <_  k
) )
335, 32sylbi 187 . . 3  |-  ( A. f ( ( f : NN --> X  /\  A. k  e.  NN  ( L `  ( f `  k ) )  <_ 
1 )  ->  E. k  e.  NN  ( M `  ( T `  ( f `
 k ) ) )  <_  k )  ->  E. k  e.  RR  A. y  e.  X  ( ( L `  y
)  <_  1  ->  ( M `  ( T `
 y ) )  <_  k ) )
34 nmoubi.y . . . 4  |-  Y  =  ( BaseSet `  W )
35 nmoubi.l . . . 4  |-  L  =  ( normCV `  U )
36 nmoubi.m . . . 4  |-  M  =  ( normCV `  W )
37 nmoubi.3 . . . 4  |-  N  =  ( U normOp OLD W
)
38 nmoubi.u . . . 4  |-  U  e.  NrmCVec
39 nmoubi.w . . . 4  |-  W  e.  NrmCVec
406, 34, 35, 36, 37, 38, 39nmobndi 21353 . . 3  |-  ( T : X --> Y  -> 
( ( N `  T )  e.  RR  <->  E. k  e.  RR  A. y  e.  X  (
( L `  y
)  <_  1  ->  ( M `  ( T `
 y ) )  <_  k ) ) )
4133, 40syl5ibr 212 . 2  |-  ( T : X --> Y  -> 
( A. f ( ( f : NN --> X  /\  A. k  e.  NN  ( L `  ( f `  k
) )  <_  1
)  ->  E. k  e.  NN  ( M `  ( T `  ( f `
 k ) ) )  <_  k )  ->  ( N `  T
)  e.  RR ) )
4241imp 418 1  |-  ( ( T : X --> Y  /\  A. f ( ( f : NN --> X  /\  A. k  e.  NN  ( L `  ( f `  k ) )  <_ 
1 )  ->  E. k  e.  NN  ( M `  ( T `  ( f `
 k ) ) )  <_  k )
)  ->  ( N `  T )  e.  RR )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358   A.wal 1527   E.wex 1528    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   _Vcvv 2788   class class class wbr 4023   -->wf 5251   ` cfv 5255  (class class class)co 5858   RRcr 8736   1c1 8738    <_ cle 8868   NNcn 9746   NrmCVeccnv 21140   BaseSetcba 21142   normCVcnmcv 21146   normOp OLDcnmoo 21319
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cc 8061  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-grpo 20858  df-gid 20859  df-ginv 20860  df-ablo 20949  df-vc 21102  df-nv 21148  df-va 21151  df-ba 21152  df-sm 21153  df-0v 21154  df-nmcv 21156  df-nmoo 21323
  Copyright terms: Public domain W3C validator