MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoco Unicode version

Theorem nmoco 18246
Description: An upper bound on the operator norm of a composition. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
nmoco.1  |-  N  =  ( S normOp U )
nmoco.2  |-  L  =  ( T normOp U )
nmoco.3  |-  M  =  ( S normOp T )
Assertion
Ref Expression
nmoco  |-  ( ( F  e.  ( T NGHom 
U )  /\  G  e.  ( S NGHom  T ) )  ->  ( N `  ( F  o.  G
) )  <_  (
( L `  F
)  x.  ( M `
 G ) ) )

Proof of Theorem nmoco
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 nmoco.1 . 2  |-  N  =  ( S normOp U )
2 eqid 2283 . 2  |-  ( Base `  S )  =  (
Base `  S )
3 eqid 2283 . 2  |-  ( norm `  S )  =  (
norm `  S )
4 eqid 2283 . 2  |-  ( norm `  U )  =  (
norm `  U )
5 eqid 2283 . 2  |-  ( 0g
`  S )  =  ( 0g `  S
)
6 nghmrcl1 18241 . . 3  |-  ( G  e.  ( S NGHom  T
)  ->  S  e. NrmGrp )
76adantl 452 . 2  |-  ( ( F  e.  ( T NGHom 
U )  /\  G  e.  ( S NGHom  T ) )  ->  S  e. NrmGrp )
8 nghmrcl2 18242 . . 3  |-  ( F  e.  ( T NGHom  U
)  ->  U  e. NrmGrp )
98adantr 451 . 2  |-  ( ( F  e.  ( T NGHom 
U )  /\  G  e.  ( S NGHom  T ) )  ->  U  e. NrmGrp )
10 nghmghm 18243 . . 3  |-  ( F  e.  ( T NGHom  U
)  ->  F  e.  ( T  GrpHom  U ) )
11 nghmghm 18243 . . 3  |-  ( G  e.  ( S NGHom  T
)  ->  G  e.  ( S  GrpHom  T ) )
12 ghmco 14702 . . 3  |-  ( ( F  e.  ( T 
GrpHom  U )  /\  G  e.  ( S  GrpHom  T ) )  ->  ( F  o.  G )  e.  ( S  GrpHom  U ) )
1310, 11, 12syl2an 463 . 2  |-  ( ( F  e.  ( T NGHom 
U )  /\  G  e.  ( S NGHom  T ) )  ->  ( F  o.  G )  e.  ( S  GrpHom  U ) )
14 nmoco.2 . . . 4  |-  L  =  ( T normOp U )
1514nghmcl 18236 . . 3  |-  ( F  e.  ( T NGHom  U
)  ->  ( L `  F )  e.  RR )
16 nmoco.3 . . . 4  |-  M  =  ( S normOp T )
1716nghmcl 18236 . . 3  |-  ( G  e.  ( S NGHom  T
)  ->  ( M `  G )  e.  RR )
18 remulcl 8822 . . 3  |-  ( ( ( L `  F
)  e.  RR  /\  ( M `  G )  e.  RR )  -> 
( ( L `  F )  x.  ( M `  G )
)  e.  RR )
1915, 17, 18syl2an 463 . 2  |-  ( ( F  e.  ( T NGHom 
U )  /\  G  e.  ( S NGHom  T ) )  ->  ( ( L `  F )  x.  ( M `  G
) )  e.  RR )
20 nghmrcl1 18241 . . . . 5  |-  ( F  e.  ( T NGHom  U
)  ->  T  e. NrmGrp )
2114nmoge0 18230 . . . . 5  |-  ( ( T  e. NrmGrp  /\  U  e. NrmGrp  /\  F  e.  ( T  GrpHom  U ) )  ->  0  <_  ( L `  F )
)
2220, 8, 10, 21syl3anc 1182 . . . 4  |-  ( F  e.  ( T NGHom  U
)  ->  0  <_  ( L `  F ) )
2315, 22jca 518 . . 3  |-  ( F  e.  ( T NGHom  U
)  ->  ( ( L `  F )  e.  RR  /\  0  <_ 
( L `  F
) ) )
24 nghmrcl2 18242 . . . . 5  |-  ( G  e.  ( S NGHom  T
)  ->  T  e. NrmGrp )
2516nmoge0 18230 . . . . 5  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  G  e.  ( S  GrpHom  T ) )  ->  0  <_  ( M `  G )
)
266, 24, 11, 25syl3anc 1182 . . . 4  |-  ( G  e.  ( S NGHom  T
)  ->  0  <_  ( M `  G ) )
2717, 26jca 518 . . 3  |-  ( G  e.  ( S NGHom  T
)  ->  ( ( M `  G )  e.  RR  /\  0  <_ 
( M `  G
) ) )
28 mulge0 9291 . . 3  |-  ( ( ( ( L `  F )  e.  RR  /\  0  <_  ( L `  F ) )  /\  ( ( M `  G )  e.  RR  /\  0  <_  ( M `  G ) ) )  ->  0  <_  (
( L `  F
)  x.  ( M `
 G ) ) )
2923, 27, 28syl2an 463 . 2  |-  ( ( F  e.  ( T NGHom 
U )  /\  G  e.  ( S NGHom  T ) )  ->  0  <_  ( ( L `  F
)  x.  ( M `
 G ) ) )
308ad2antrr 706 . . . . 5  |-  ( ( ( F  e.  ( T NGHom  U )  /\  G  e.  ( S NGHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  x  =/=  ( 0g `  S
) ) )  ->  U  e. NrmGrp )
3110ad2antrr 706 . . . . . . 7  |-  ( ( ( F  e.  ( T NGHom  U )  /\  G  e.  ( S NGHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  x  =/=  ( 0g `  S
) ) )  ->  F  e.  ( T  GrpHom  U ) )
32 eqid 2283 . . . . . . . 8  |-  ( Base `  T )  =  (
Base `  T )
33 eqid 2283 . . . . . . . 8  |-  ( Base `  U )  =  (
Base `  U )
3432, 33ghmf 14687 . . . . . . 7  |-  ( F  e.  ( T  GrpHom  U )  ->  F :
( Base `  T ) --> ( Base `  U )
)
3531, 34syl 15 . . . . . 6  |-  ( ( ( F  e.  ( T NGHom  U )  /\  G  e.  ( S NGHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  x  =/=  ( 0g `  S
) ) )  ->  F : ( Base `  T
) --> ( Base `  U
) )
3611ad2antlr 707 . . . . . . . 8  |-  ( ( ( F  e.  ( T NGHom  U )  /\  G  e.  ( S NGHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  x  =/=  ( 0g `  S
) ) )  ->  G  e.  ( S  GrpHom  T ) )
372, 32ghmf 14687 . . . . . . . 8  |-  ( G  e.  ( S  GrpHom  T )  ->  G :
( Base `  S ) --> ( Base `  T )
)
3836, 37syl 15 . . . . . . 7  |-  ( ( ( F  e.  ( T NGHom  U )  /\  G  e.  ( S NGHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  x  =/=  ( 0g `  S
) ) )  ->  G : ( Base `  S
) --> ( Base `  T
) )
39 simprl 732 . . . . . . 7  |-  ( ( ( F  e.  ( T NGHom  U )  /\  G  e.  ( S NGHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  x  =/=  ( 0g `  S
) ) )  ->  x  e.  ( Base `  S ) )
40 ffvelrn 5663 . . . . . . 7  |-  ( ( G : ( Base `  S ) --> ( Base `  T )  /\  x  e.  ( Base `  S
) )  ->  ( G `  x )  e.  ( Base `  T
) )
4138, 39, 40syl2anc 642 . . . . . 6  |-  ( ( ( F  e.  ( T NGHom  U )  /\  G  e.  ( S NGHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  x  =/=  ( 0g `  S
) ) )  -> 
( G `  x
)  e.  ( Base `  T ) )
42 ffvelrn 5663 . . . . . 6  |-  ( ( F : ( Base `  T ) --> ( Base `  U )  /\  ( G `  x )  e.  ( Base `  T
) )  ->  ( F `  ( G `  x ) )  e.  ( Base `  U
) )
4335, 41, 42syl2anc 642 . . . . 5  |-  ( ( ( F  e.  ( T NGHom  U )  /\  G  e.  ( S NGHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  x  =/=  ( 0g `  S
) ) )  -> 
( F `  ( G `  x )
)  e.  ( Base `  U ) )
4433, 4nmcl 18137 . . . . 5  |-  ( ( U  e. NrmGrp  /\  ( F `  ( G `  x ) )  e.  ( Base `  U
) )  ->  (
( norm `  U ) `  ( F `  ( G `  x )
) )  e.  RR )
4530, 43, 44syl2anc 642 . . . 4  |-  ( ( ( F  e.  ( T NGHom  U )  /\  G  e.  ( S NGHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  x  =/=  ( 0g `  S
) ) )  -> 
( ( norm `  U
) `  ( F `  ( G `  x
) ) )  e.  RR )
4615ad2antrr 706 . . . . 5  |-  ( ( ( F  e.  ( T NGHom  U )  /\  G  e.  ( S NGHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  x  =/=  ( 0g `  S
) ) )  -> 
( L `  F
)  e.  RR )
4720ad2antrr 706 . . . . . 6  |-  ( ( ( F  e.  ( T NGHom  U )  /\  G  e.  ( S NGHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  x  =/=  ( 0g `  S
) ) )  ->  T  e. NrmGrp )
48 eqid 2283 . . . . . . 7  |-  ( norm `  T )  =  (
norm `  T )
4932, 48nmcl 18137 . . . . . 6  |-  ( ( T  e. NrmGrp  /\  ( G `  x )  e.  ( Base `  T
) )  ->  (
( norm `  T ) `  ( G `  x
) )  e.  RR )
5047, 41, 49syl2anc 642 . . . . 5  |-  ( ( ( F  e.  ( T NGHom  U )  /\  G  e.  ( S NGHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  x  =/=  ( 0g `  S
) ) )  -> 
( ( norm `  T
) `  ( G `  x ) )  e.  RR )
5146, 50remulcld 8863 . . . 4  |-  ( ( ( F  e.  ( T NGHom  U )  /\  G  e.  ( S NGHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  x  =/=  ( 0g `  S
) ) )  -> 
( ( L `  F )  x.  (
( norm `  T ) `  ( G `  x
) ) )  e.  RR )
5217ad2antlr 707 . . . . . 6  |-  ( ( ( F  e.  ( T NGHom  U )  /\  G  e.  ( S NGHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  x  =/=  ( 0g `  S
) ) )  -> 
( M `  G
)  e.  RR )
532, 3nmcl 18137 . . . . . . . 8  |-  ( ( S  e. NrmGrp  /\  x  e.  ( Base `  S
) )  ->  (
( norm `  S ) `  x )  e.  RR )
546, 53sylan 457 . . . . . . 7  |-  ( ( G  e.  ( S NGHom 
T )  /\  x  e.  ( Base `  S
) )  ->  (
( norm `  S ) `  x )  e.  RR )
5554ad2ant2lr 728 . . . . . 6  |-  ( ( ( F  e.  ( T NGHom  U )  /\  G  e.  ( S NGHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  x  =/=  ( 0g `  S
) ) )  -> 
( ( norm `  S
) `  x )  e.  RR )
5652, 55remulcld 8863 . . . . 5  |-  ( ( ( F  e.  ( T NGHom  U )  /\  G  e.  ( S NGHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  x  =/=  ( 0g `  S
) ) )  -> 
( ( M `  G )  x.  (
( norm `  S ) `  x ) )  e.  RR )
5746, 56remulcld 8863 . . . 4  |-  ( ( ( F  e.  ( T NGHom  U )  /\  G  e.  ( S NGHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  x  =/=  ( 0g `  S
) ) )  -> 
( ( L `  F )  x.  (
( M `  G
)  x.  ( (
norm `  S ) `  x ) ) )  e.  RR )
58 simpll 730 . . . . 5  |-  ( ( ( F  e.  ( T NGHom  U )  /\  G  e.  ( S NGHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  x  =/=  ( 0g `  S
) ) )  ->  F  e.  ( T NGHom  U ) )
5914, 32, 48, 4nmoi 18237 . . . . 5  |-  ( ( F  e.  ( T NGHom 
U )  /\  ( G `  x )  e.  ( Base `  T
) )  ->  (
( norm `  U ) `  ( F `  ( G `  x )
) )  <_  (
( L `  F
)  x.  ( (
norm `  T ) `  ( G `  x
) ) ) )
6058, 41, 59syl2anc 642 . . . 4  |-  ( ( ( F  e.  ( T NGHom  U )  /\  G  e.  ( S NGHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  x  =/=  ( 0g `  S
) ) )  -> 
( ( norm `  U
) `  ( F `  ( G `  x
) ) )  <_ 
( ( L `  F )  x.  (
( norm `  T ) `  ( G `  x
) ) ) )
6123ad2antrr 706 . . . . 5  |-  ( ( ( F  e.  ( T NGHom  U )  /\  G  e.  ( S NGHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  x  =/=  ( 0g `  S
) ) )  -> 
( ( L `  F )  e.  RR  /\  0  <_  ( L `  F ) ) )
6216, 2, 3, 48nmoi 18237 . . . . . 6  |-  ( ( G  e.  ( S NGHom 
T )  /\  x  e.  ( Base `  S
) )  ->  (
( norm `  T ) `  ( G `  x
) )  <_  (
( M `  G
)  x.  ( (
norm `  S ) `  x ) ) )
6362ad2ant2lr 728 . . . . 5  |-  ( ( ( F  e.  ( T NGHom  U )  /\  G  e.  ( S NGHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  x  =/=  ( 0g `  S
) ) )  -> 
( ( norm `  T
) `  ( G `  x ) )  <_ 
( ( M `  G )  x.  (
( norm `  S ) `  x ) ) )
64 lemul2a 9611 . . . . 5  |-  ( ( ( ( ( norm `  T ) `  ( G `  x )
)  e.  RR  /\  ( ( M `  G )  x.  (
( norm `  S ) `  x ) )  e.  RR  /\  ( ( L `  F )  e.  RR  /\  0  <_  ( L `  F
) ) )  /\  ( ( norm `  T
) `  ( G `  x ) )  <_ 
( ( M `  G )  x.  (
( norm `  S ) `  x ) ) )  ->  ( ( L `
 F )  x.  ( ( norm `  T
) `  ( G `  x ) ) )  <_  ( ( L `
 F )  x.  ( ( M `  G )  x.  (
( norm `  S ) `  x ) ) ) )
6550, 56, 61, 63, 64syl31anc 1185 . . . 4  |-  ( ( ( F  e.  ( T NGHom  U )  /\  G  e.  ( S NGHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  x  =/=  ( 0g `  S
) ) )  -> 
( ( L `  F )  x.  (
( norm `  T ) `  ( G `  x
) ) )  <_ 
( ( L `  F )  x.  (
( M `  G
)  x.  ( (
norm `  S ) `  x ) ) ) )
6645, 51, 57, 60, 65letrd 8973 . . 3  |-  ( ( ( F  e.  ( T NGHom  U )  /\  G  e.  ( S NGHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  x  =/=  ( 0g `  S
) ) )  -> 
( ( norm `  U
) `  ( F `  ( G `  x
) ) )  <_ 
( ( L `  F )  x.  (
( M `  G
)  x.  ( (
norm `  S ) `  x ) ) ) )
67 fvco3 5596 . . . . 5  |-  ( ( G : ( Base `  S ) --> ( Base `  T )  /\  x  e.  ( Base `  S
) )  ->  (
( F  o.  G
) `  x )  =  ( F `  ( G `  x ) ) )
6838, 39, 67syl2anc 642 . . . 4  |-  ( ( ( F  e.  ( T NGHom  U )  /\  G  e.  ( S NGHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  x  =/=  ( 0g `  S
) ) )  -> 
( ( F  o.  G ) `  x
)  =  ( F `
 ( G `  x ) ) )
6968fveq2d 5529 . . 3  |-  ( ( ( F  e.  ( T NGHom  U )  /\  G  e.  ( S NGHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  x  =/=  ( 0g `  S
) ) )  -> 
( ( norm `  U
) `  ( ( F  o.  G ) `  x ) )  =  ( ( norm `  U
) `  ( F `  ( G `  x
) ) ) )
7046recnd 8861 . . . 4  |-  ( ( ( F  e.  ( T NGHom  U )  /\  G  e.  ( S NGHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  x  =/=  ( 0g `  S
) ) )  -> 
( L `  F
)  e.  CC )
7152recnd 8861 . . . 4  |-  ( ( ( F  e.  ( T NGHom  U )  /\  G  e.  ( S NGHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  x  =/=  ( 0g `  S
) ) )  -> 
( M `  G
)  e.  CC )
7255recnd 8861 . . . 4  |-  ( ( ( F  e.  ( T NGHom  U )  /\  G  e.  ( S NGHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  x  =/=  ( 0g `  S
) ) )  -> 
( ( norm `  S
) `  x )  e.  CC )
7370, 71, 72mulassd 8858 . . 3  |-  ( ( ( F  e.  ( T NGHom  U )  /\  G  e.  ( S NGHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  x  =/=  ( 0g `  S
) ) )  -> 
( ( ( L `
 F )  x.  ( M `  G
) )  x.  (
( norm `  S ) `  x ) )  =  ( ( L `  F )  x.  (
( M `  G
)  x.  ( (
norm `  S ) `  x ) ) ) )
7466, 69, 733brtr4d 4053 . 2  |-  ( ( ( F  e.  ( T NGHom  U )  /\  G  e.  ( S NGHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  x  =/=  ( 0g `  S
) ) )  -> 
( ( norm `  U
) `  ( ( F  o.  G ) `  x ) )  <_ 
( ( ( L `
 F )  x.  ( M `  G
) )  x.  (
( norm `  S ) `  x ) ) )
751, 2, 3, 4, 5, 7, 9, 13, 19, 29, 74nmolb2d 18227 1  |-  ( ( F  e.  ( T NGHom 
U )  /\  G  e.  ( S NGHom  T ) )  ->  ( N `  ( F  o.  G
) )  <_  (
( L `  F
)  x.  ( M `
 G ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   class class class wbr 4023    o. ccom 4693   -->wf 5251   ` cfv 5255  (class class class)co 5858   RRcr 8736   0cc0 8737    x. cmul 8742    <_ cle 8868   Basecbs 13148   0gc0g 13400    GrpHom cghm 14680   normcnm 18099  NrmGrpcngp 18100   normOpcnmo 18214   NGHom cnghm 18215
This theorem is referenced by:  nghmco  18247
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ico 10662  df-topgen 13344  df-0g 13404  df-mnd 14367  df-mhm 14415  df-grp 14489  df-ghm 14681  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-xms 17885  df-ms 17886  df-nm 18105  df-ngp 18106  df-nmo 18217  df-nghm 18218
  Copyright terms: Public domain W3C validator