MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmofval Unicode version

Theorem nmofval 18239
Description: Value of the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypotheses
Ref Expression
nmofval.1  |-  N  =  ( S normOp T )
nmofval.2  |-  V  =  ( Base `  S
)
nmofval.3  |-  L  =  ( norm `  S
)
nmofval.4  |-  M  =  ( norm `  T
)
Assertion
Ref Expression
nmofval  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  N  =  ( f  e.  ( S  GrpHom  T )  |->  sup ( { r  e.  ( 0 [,)  +oo )  |  A. x  e.  V  ( M `  ( f `  x
) )  <_  (
r  x.  ( L `
 x ) ) } ,  RR* ,  `'  <  ) ) )
Distinct variable groups:    f, r, x, L    f, M, r, x    S, f, r, x    T, f, r, x    f, V, r, x    N, r, x
Allowed substitution hint:    N( f)

Proof of Theorem nmofval
Dummy variables  s 
t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmofval.1 . 2  |-  N  =  ( S normOp T )
2 oveq12 5883 . . . 4  |-  ( ( s  =  S  /\  t  =  T )  ->  ( s  GrpHom  t )  =  ( S  GrpHom  T ) )
3 simpl 443 . . . . . . . . 9  |-  ( ( s  =  S  /\  t  =  T )  ->  s  =  S )
43fveq2d 5545 . . . . . . . 8  |-  ( ( s  =  S  /\  t  =  T )  ->  ( Base `  s
)  =  ( Base `  S ) )
5 nmofval.2 . . . . . . . 8  |-  V  =  ( Base `  S
)
64, 5syl6eqr 2346 . . . . . . 7  |-  ( ( s  =  S  /\  t  =  T )  ->  ( Base `  s
)  =  V )
7 simpr 447 . . . . . . . . . . 11  |-  ( ( s  =  S  /\  t  =  T )  ->  t  =  T )
87fveq2d 5545 . . . . . . . . . 10  |-  ( ( s  =  S  /\  t  =  T )  ->  ( norm `  t
)  =  ( norm `  T ) )
9 nmofval.4 . . . . . . . . . 10  |-  M  =  ( norm `  T
)
108, 9syl6eqr 2346 . . . . . . . . 9  |-  ( ( s  =  S  /\  t  =  T )  ->  ( norm `  t
)  =  M )
1110fveq1d 5543 . . . . . . . 8  |-  ( ( s  =  S  /\  t  =  T )  ->  ( ( norm `  t
) `  ( f `  x ) )  =  ( M `  (
f `  x )
) )
123fveq2d 5545 . . . . . . . . . . 11  |-  ( ( s  =  S  /\  t  =  T )  ->  ( norm `  s
)  =  ( norm `  S ) )
13 nmofval.3 . . . . . . . . . . 11  |-  L  =  ( norm `  S
)
1412, 13syl6eqr 2346 . . . . . . . . . 10  |-  ( ( s  =  S  /\  t  =  T )  ->  ( norm `  s
)  =  L )
1514fveq1d 5543 . . . . . . . . 9  |-  ( ( s  =  S  /\  t  =  T )  ->  ( ( norm `  s
) `  x )  =  ( L `  x ) )
1615oveq2d 5890 . . . . . . . 8  |-  ( ( s  =  S  /\  t  =  T )  ->  ( r  x.  (
( norm `  s ) `  x ) )  =  ( r  x.  ( L `  x )
) )
1711, 16breq12d 4052 . . . . . . 7  |-  ( ( s  =  S  /\  t  =  T )  ->  ( ( ( norm `  t ) `  (
f `  x )
)  <_  ( r  x.  ( ( norm `  s
) `  x )
)  <->  ( M `  ( f `  x
) )  <_  (
r  x.  ( L `
 x ) ) ) )
186, 17raleqbidv 2761 . . . . . 6  |-  ( ( s  =  S  /\  t  =  T )  ->  ( A. x  e.  ( Base `  s
) ( ( norm `  t ) `  (
f `  x )
)  <_  ( r  x.  ( ( norm `  s
) `  x )
)  <->  A. x  e.  V  ( M `  ( f `
 x ) )  <_  ( r  x.  ( L `  x
) ) ) )
1918rabbidv 2793 . . . . 5  |-  ( ( s  =  S  /\  t  =  T )  ->  { r  e.  ( 0 [,)  +oo )  |  A. x  e.  (
Base `  s )
( ( norm `  t
) `  ( f `  x ) )  <_ 
( r  x.  (
( norm `  s ) `  x ) ) }  =  { r  e.  ( 0 [,)  +oo )  |  A. x  e.  V  ( M `  ( f `  x
) )  <_  (
r  x.  ( L `
 x ) ) } )
2019supeq1d 7215 . . . 4  |-  ( ( s  =  S  /\  t  =  T )  ->  sup ( { r  e.  ( 0 [,) 
+oo )  |  A. x  e.  ( Base `  s ) ( (
norm `  t ) `  ( f `  x
) )  <_  (
r  x.  ( (
norm `  s ) `  x ) ) } ,  RR* ,  `'  <  )  =  sup ( { r  e.  ( 0 [,)  +oo )  |  A. x  e.  V  ( M `  ( f `  x ) )  <_ 
( r  x.  ( L `  x )
) } ,  RR* ,  `'  <  ) )
212, 20mpteq12dv 4114 . . 3  |-  ( ( s  =  S  /\  t  =  T )  ->  ( f  e.  ( s  GrpHom  t )  |->  sup ( { r  e.  ( 0 [,)  +oo )  |  A. x  e.  ( Base `  s
) ( ( norm `  t ) `  (
f `  x )
)  <_  ( r  x.  ( ( norm `  s
) `  x )
) } ,  RR* ,  `'  <  ) )  =  ( f  e.  ( S  GrpHom  T )  |->  sup ( { r  e.  ( 0 [,)  +oo )  |  A. x  e.  V  ( M `  ( f `  x
) )  <_  (
r  x.  ( L `
 x ) ) } ,  RR* ,  `'  <  ) ) )
22 df-nmo 18233 . . 3  |-  normOp  =  ( s  e. NrmGrp ,  t  e. NrmGrp  |->  ( f  e.  ( s  GrpHom  t )  |->  sup ( { r  e.  ( 0 [,)  +oo )  |  A. x  e.  ( Base `  s
) ( ( norm `  t ) `  (
f `  x )
)  <_  ( r  x.  ( ( norm `  s
) `  x )
) } ,  RR* ,  `'  <  ) ) )
23 eqid 2296 . . . . 5  |-  ( f  e.  ( S  GrpHom  T )  |->  sup ( { r  e.  ( 0 [,) 
+oo )  |  A. x  e.  V  ( M `  ( f `  x ) )  <_ 
( r  x.  ( L `  x )
) } ,  RR* ,  `'  <  ) )  =  ( f  e.  ( S  GrpHom  T )  |->  sup ( { r  e.  ( 0 [,)  +oo )  |  A. x  e.  V  ( M `  ( f `  x
) )  <_  (
r  x.  ( L `
 x ) ) } ,  RR* ,  `'  <  ) )
24 ssrab2 3271 . . . . . . 7  |-  { r  e.  ( 0 [,) 
+oo )  |  A. x  e.  V  ( M `  ( f `  x ) )  <_ 
( r  x.  ( L `  x )
) }  C_  (
0 [,)  +oo )
25 icossxr 10750 . . . . . . 7  |-  ( 0 [,)  +oo )  C_  RR*
2624, 25sstri 3201 . . . . . 6  |-  { r  e.  ( 0 [,) 
+oo )  |  A. x  e.  V  ( M `  ( f `  x ) )  <_ 
( r  x.  ( L `  x )
) }  C_  RR*
27 infmxrcl 10651 . . . . . 6  |-  ( { r  e.  ( 0 [,)  +oo )  |  A. x  e.  V  ( M `  ( f `  x ) )  <_ 
( r  x.  ( L `  x )
) }  C_  RR*  ->  sup ( { r  e.  ( 0 [,)  +oo )  |  A. x  e.  V  ( M `  ( f `  x
) )  <_  (
r  x.  ( L `
 x ) ) } ,  RR* ,  `'  <  )  e.  RR* )
2826, 27mp1i 11 . . . . 5  |-  ( f  e.  ( S  GrpHom  T )  ->  sup ( { r  e.  ( 0 [,)  +oo )  |  A. x  e.  V  ( M `  ( f `
 x ) )  <_  ( r  x.  ( L `  x
) ) } ,  RR* ,  `'  <  )  e.  RR* )
2923, 28fmpti 5699 . . . 4  |-  ( f  e.  ( S  GrpHom  T )  |->  sup ( { r  e.  ( 0 [,) 
+oo )  |  A. x  e.  V  ( M `  ( f `  x ) )  <_ 
( r  x.  ( L `  x )
) } ,  RR* ,  `'  <  ) ) : ( S  GrpHom  T ) -->
RR*
30 ovex 5899 . . . 4  |-  ( S 
GrpHom  T )  e.  _V
31 xrex 10367 . . . 4  |-  RR*  e.  _V
32 fex2 5417 . . . 4  |-  ( ( ( f  e.  ( S  GrpHom  T )  |->  sup ( { r  e.  ( 0 [,)  +oo )  |  A. x  e.  V  ( M `  ( f `  x
) )  <_  (
r  x.  ( L `
 x ) ) } ,  RR* ,  `'  <  ) ) : ( S  GrpHom  T ) --> RR* 
/\  ( S  GrpHom  T )  e.  _V  /\  RR* 
e.  _V )  ->  (
f  e.  ( S 
GrpHom  T )  |->  sup ( { r  e.  ( 0 [,)  +oo )  |  A. x  e.  V  ( M `  ( f `
 x ) )  <_  ( r  x.  ( L `  x
) ) } ,  RR* ,  `'  <  )
)  e.  _V )
3329, 30, 31, 32mp3an 1277 . . 3  |-  ( f  e.  ( S  GrpHom  T )  |->  sup ( { r  e.  ( 0 [,) 
+oo )  |  A. x  e.  V  ( M `  ( f `  x ) )  <_ 
( r  x.  ( L `  x )
) } ,  RR* ,  `'  <  ) )  e. 
_V
3421, 22, 33ovmpt2a 5994 . 2  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  ( S normOp T )  =  ( f  e.  ( S 
GrpHom  T )  |->  sup ( { r  e.  ( 0 [,)  +oo )  |  A. x  e.  V  ( M `  ( f `
 x ) )  <_  ( r  x.  ( L `  x
) ) } ,  RR* ,  `'  <  )
) )
351, 34syl5eq 2340 1  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  N  =  ( f  e.  ( S  GrpHom  T )  |->  sup ( { r  e.  ( 0 [,)  +oo )  |  A. x  e.  V  ( M `  ( f `  x
) )  <_  (
r  x.  ( L `
 x ) ) } ,  RR* ,  `'  <  ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   {crab 2560   _Vcvv 2801    C_ wss 3165   class class class wbr 4039    e. cmpt 4093   `'ccnv 4704   -->wf 5267   ` cfv 5271  (class class class)co 5874   supcsup 7209   0cc0 8753    x. cmul 8758    +oocpnf 8880   RR*cxr 8882    < clt 8883    <_ cle 8884   [,)cico 10674   Basecbs 13164    GrpHom cghm 14696   normcnm 18115  NrmGrpcngp 18116   normOpcnmo 18230
This theorem is referenced by:  nmoval  18240  nmof  18244
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-ico 10678  df-nmo 18233
  Copyright terms: Public domain W3C validator