MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoi Structured version   Unicode version

Theorem nmoi 18754
Description: The operator norm achieves the minimum of the set of upper bounds, if the operator is bounded. (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypotheses
Ref Expression
nmofval.1  |-  N  =  ( S normOp T )
nmoi.2  |-  V  =  ( Base `  S
)
nmoi.3  |-  L  =  ( norm `  S
)
nmoi.4  |-  M  =  ( norm `  T
)
Assertion
Ref Expression
nmoi  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  ( M `  ( F `  X ) )  <_ 
( ( N `  F )  x.  ( L `  X )
) )

Proof of Theorem nmoi
Dummy variables  r  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5720 . . . 4  |-  ( X  =  ( 0g `  S )  ->  ( F `  X )  =  ( F `  ( 0g `  S ) ) )
21fveq2d 5724 . . 3  |-  ( X  =  ( 0g `  S )  ->  ( M `  ( F `  X ) )  =  ( M `  ( F `  ( 0g `  S ) ) ) )
3 fveq2 5720 . . . 4  |-  ( X  =  ( 0g `  S )  ->  ( L `  X )  =  ( L `  ( 0g `  S ) ) )
43oveq2d 6089 . . 3  |-  ( X  =  ( 0g `  S )  ->  (
( N `  F
)  x.  ( L `
 X ) )  =  ( ( N `
 F )  x.  ( L `  ( 0g `  S ) ) ) )
52, 4breq12d 4217 . 2  |-  ( X  =  ( 0g `  S )  ->  (
( M `  ( F `  X )
)  <_  ( ( N `  F )  x.  ( L `  X
) )  <->  ( M `  ( F `  ( 0g `  S ) ) )  <_  ( ( N `  F )  x.  ( L `  ( 0g `  S ) ) ) ) )
6 fveq2 5720 . . . . . . . . . 10  |-  ( x  =  X  ->  ( F `  x )  =  ( F `  X ) )
76fveq2d 5724 . . . . . . . . 9  |-  ( x  =  X  ->  ( M `  ( F `  x ) )  =  ( M `  ( F `  X )
) )
8 fveq2 5720 . . . . . . . . . 10  |-  ( x  =  X  ->  ( L `  x )  =  ( L `  X ) )
98oveq2d 6089 . . . . . . . . 9  |-  ( x  =  X  ->  (
r  x.  ( L `
 x ) )  =  ( r  x.  ( L `  X
) ) )
107, 9breq12d 4217 . . . . . . . 8  |-  ( x  =  X  ->  (
( M `  ( F `  x )
)  <_  ( r  x.  ( L `  x
) )  <->  ( M `  ( F `  X
) )  <_  (
r  x.  ( L `
 X ) ) ) )
1110rspcv 3040 . . . . . . 7  |-  ( X  e.  V  ->  ( A. x  e.  V  ( M `  ( F `
 x ) )  <_  ( r  x.  ( L `  x
) )  ->  ( M `  ( F `  X ) )  <_ 
( r  x.  ( L `  X )
) ) )
1211ad3antlr 712 . . . . . 6  |-  ( ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V
)  /\  X  =/=  ( 0g `  S ) )  /\  r  e.  ( 0 [,)  +oo ) )  ->  ( A. x  e.  V  ( M `  ( F `
 x ) )  <_  ( r  x.  ( L `  x
) )  ->  ( M `  ( F `  X ) )  <_ 
( r  x.  ( L `  X )
) ) )
13 nmofval.1 . . . . . . . . . . . . . 14  |-  N  =  ( S normOp T )
1413isnghm 18749 . . . . . . . . . . . . 13  |-  ( F  e.  ( S NGHom  T
)  <->  ( ( S  e. NrmGrp  /\  T  e. NrmGrp )  /\  ( F  e.  ( S  GrpHom  T )  /\  ( N `  F )  e.  RR ) ) )
1514simplbi 447 . . . . . . . . . . . 12  |-  ( F  e.  ( S NGHom  T
)  ->  ( S  e. NrmGrp  /\  T  e. NrmGrp )
)
1615adantr 452 . . . . . . . . . . 11  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  ( S  e. NrmGrp  /\  T  e. NrmGrp
) )
1716simprd 450 . . . . . . . . . 10  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  T  e. NrmGrp )
1814simprbi 451 . . . . . . . . . . . . . 14  |-  ( F  e.  ( S NGHom  T
)  ->  ( F  e.  ( S  GrpHom  T )  /\  ( N `  F )  e.  RR ) )
1918adantr 452 . . . . . . . . . . . . 13  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  ( F  e.  ( S  GrpHom  T )  /\  ( N `  F )  e.  RR ) )
2019simpld 446 . . . . . . . . . . . 12  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  F  e.  ( S  GrpHom  T ) )
21 nmoi.2 . . . . . . . . . . . . 13  |-  V  =  ( Base `  S
)
22 eqid 2435 . . . . . . . . . . . . 13  |-  ( Base `  T )  =  (
Base `  T )
2321, 22ghmf 15002 . . . . . . . . . . . 12  |-  ( F  e.  ( S  GrpHom  T )  ->  F : V
--> ( Base `  T
) )
2420, 23syl 16 . . . . . . . . . . 11  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  F : V --> ( Base `  T
) )
25 ffvelrn 5860 . . . . . . . . . . 11  |-  ( ( F : V --> ( Base `  T )  /\  X  e.  V )  ->  ( F `  X )  e.  ( Base `  T
) )
2624, 25sylancom 649 . . . . . . . . . 10  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  ( F `  X )  e.  ( Base `  T
) )
27 nmoi.4 . . . . . . . . . . 11  |-  M  =  ( norm `  T
)
2822, 27nmcl 18654 . . . . . . . . . 10  |-  ( ( T  e. NrmGrp  /\  ( F `  X )  e.  ( Base `  T
) )  ->  ( M `  ( F `  X ) )  e.  RR )
2917, 26, 28syl2anc 643 . . . . . . . . 9  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  ( M `  ( F `  X ) )  e.  RR )
3029adantr 452 . . . . . . . 8  |-  ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V )  /\  X  =/=  ( 0g `  S ) )  ->  ( M `  ( F `  X ) )  e.  RR )
3130adantr 452 . . . . . . 7  |-  ( ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V
)  /\  X  =/=  ( 0g `  S ) )  /\  r  e.  ( 0 [,)  +oo ) )  ->  ( M `  ( F `  X ) )  e.  RR )
32 elrege0 10999 . . . . . . . . 9  |-  ( r  e.  ( 0 [,) 
+oo )  <->  ( r  e.  RR  /\  0  <_ 
r ) )
3332simplbi 447 . . . . . . . 8  |-  ( r  e.  ( 0 [,) 
+oo )  ->  r  e.  RR )
3433adantl 453 . . . . . . 7  |-  ( ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V
)  /\  X  =/=  ( 0g `  S ) )  /\  r  e.  ( 0 [,)  +oo ) )  ->  r  e.  RR )
3516simpld 446 . . . . . . . . . . 11  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  S  e. NrmGrp )
36 simpr 448 . . . . . . . . . . 11  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  X  e.  V )
3735, 36jca 519 . . . . . . . . . 10  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  ( S  e. NrmGrp  /\  X  e.  V ) )
38 nmoi.3 . . . . . . . . . . . 12  |-  L  =  ( norm `  S
)
39 eqid 2435 . . . . . . . . . . . 12  |-  ( 0g
`  S )  =  ( 0g `  S
)
4021, 38, 39nmrpcl 18658 . . . . . . . . . . 11  |-  ( ( S  e. NrmGrp  /\  X  e.  V  /\  X  =/=  ( 0g `  S
) )  ->  ( L `  X )  e.  RR+ )
41403expa 1153 . . . . . . . . . 10  |-  ( ( ( S  e. NrmGrp  /\  X  e.  V )  /\  X  =/=  ( 0g `  S
) )  ->  ( L `  X )  e.  RR+ )
4237, 41sylan 458 . . . . . . . . 9  |-  ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V )  /\  X  =/=  ( 0g `  S ) )  ->  ( L `  X )  e.  RR+ )
4342rpregt0d 10646 . . . . . . . 8  |-  ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V )  /\  X  =/=  ( 0g `  S ) )  ->  ( ( L `
 X )  e.  RR  /\  0  < 
( L `  X
) ) )
4443adantr 452 . . . . . . 7  |-  ( ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V
)  /\  X  =/=  ( 0g `  S ) )  /\  r  e.  ( 0 [,)  +oo ) )  ->  (
( L `  X
)  e.  RR  /\  0  <  ( L `  X ) ) )
45 ledivmul2 9879 . . . . . . 7  |-  ( ( ( M `  ( F `  X )
)  e.  RR  /\  r  e.  RR  /\  (
( L `  X
)  e.  RR  /\  0  <  ( L `  X ) ) )  ->  ( ( ( M `  ( F `
 X ) )  /  ( L `  X ) )  <_ 
r  <->  ( M `  ( F `  X ) )  <_  ( r  x.  ( L `  X
) ) ) )
4631, 34, 44, 45syl3anc 1184 . . . . . 6  |-  ( ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V
)  /\  X  =/=  ( 0g `  S ) )  /\  r  e.  ( 0 [,)  +oo ) )  ->  (
( ( M `  ( F `  X ) )  /  ( L `
 X ) )  <_  r  <->  ( M `  ( F `  X
) )  <_  (
r  x.  ( L `
 X ) ) ) )
4712, 46sylibrd 226 . . . . 5  |-  ( ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V
)  /\  X  =/=  ( 0g `  S ) )  /\  r  e.  ( 0 [,)  +oo ) )  ->  ( A. x  e.  V  ( M `  ( F `
 x ) )  <_  ( r  x.  ( L `  x
) )  ->  (
( M `  ( F `  X )
)  /  ( L `
 X ) )  <_  r ) )
4847ralrimiva 2781 . . . 4  |-  ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V )  /\  X  =/=  ( 0g `  S ) )  ->  A. r  e.  ( 0 [,)  +oo )
( A. x  e.  V  ( M `  ( F `  x ) )  <_  ( r  x.  ( L `  x
) )  ->  (
( M `  ( F `  X )
)  /  ( L `
 X ) )  <_  r ) )
4935adantr 452 . . . . 5  |-  ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V )  /\  X  =/=  ( 0g `  S ) )  ->  S  e. NrmGrp )
5017adantr 452 . . . . 5  |-  ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V )  /\  X  =/=  ( 0g `  S ) )  ->  T  e. NrmGrp )
5120adantr 452 . . . . 5  |-  ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V )  /\  X  =/=  ( 0g `  S ) )  ->  F  e.  ( S  GrpHom  T ) )
5230, 42rerpdivcld 10667 . . . . . 6  |-  ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V )  /\  X  =/=  ( 0g `  S ) )  ->  ( ( M `
 ( F `  X ) )  / 
( L `  X
) )  e.  RR )
5352rexrd 9126 . . . . 5  |-  ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V )  /\  X  =/=  ( 0g `  S ) )  ->  ( ( M `
 ( F `  X ) )  / 
( L `  X
) )  e.  RR* )
5413, 21, 38, 27nmogelb 18742 . . . . 5  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  /\  ( ( M `
 ( F `  X ) )  / 
( L `  X
) )  e.  RR* )  ->  ( ( ( M `  ( F `
 X ) )  /  ( L `  X ) )  <_ 
( N `  F
)  <->  A. r  e.  ( 0 [,)  +oo )
( A. x  e.  V  ( M `  ( F `  x ) )  <_  ( r  x.  ( L `  x
) )  ->  (
( M `  ( F `  X )
)  /  ( L `
 X ) )  <_  r ) ) )
5549, 50, 51, 53, 54syl31anc 1187 . . . 4  |-  ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V )  /\  X  =/=  ( 0g `  S ) )  ->  ( ( ( M `  ( F `
 X ) )  /  ( L `  X ) )  <_ 
( N `  F
)  <->  A. r  e.  ( 0 [,)  +oo )
( A. x  e.  V  ( M `  ( F `  x ) )  <_  ( r  x.  ( L `  x
) )  ->  (
( M `  ( F `  X )
)  /  ( L `
 X ) )  <_  r ) ) )
5648, 55mpbird 224 . . 3  |-  ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V )  /\  X  =/=  ( 0g `  S ) )  ->  ( ( M `
 ( F `  X ) )  / 
( L `  X
) )  <_  ( N `  F )
)
5719simprd 450 . . . . 5  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  ( N `  F )  e.  RR )
5857adantr 452 . . . 4  |-  ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V )  /\  X  =/=  ( 0g `  S ) )  ->  ( N `  F )  e.  RR )
5930, 58, 42ledivmul2d 10690 . . 3  |-  ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V )  /\  X  =/=  ( 0g `  S ) )  ->  ( ( ( M `  ( F `
 X ) )  /  ( L `  X ) )  <_ 
( N `  F
)  <->  ( M `  ( F `  X ) )  <_  ( ( N `  F )  x.  ( L `  X
) ) ) )
6056, 59mpbid 202 . 2  |-  ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V )  /\  X  =/=  ( 0g `  S ) )  ->  ( M `  ( F `  X ) )  <_  ( ( N `  F )  x.  ( L `  X
) ) )
61 eqid 2435 . . . . . . 7  |-  ( 0g
`  T )  =  ( 0g `  T
)
6239, 61ghmid 15004 . . . . . 6  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F `  ( 0g `  S
) )  =  ( 0g `  T ) )
6320, 62syl 16 . . . . 5  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  ( F `  ( 0g `  S ) )  =  ( 0g `  T
) )
6463fveq2d 5724 . . . 4  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  ( M `  ( F `  ( 0g `  S
) ) )  =  ( M `  ( 0g `  T ) ) )
6527, 61nm0 18665 . . . . 5  |-  ( T  e. NrmGrp  ->  ( M `  ( 0g `  T ) )  =  0 )
6617, 65syl 16 . . . 4  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  ( M `  ( 0g `  T ) )  =  0 )
6764, 66eqtrd 2467 . . 3  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  ( M `  ( F `  ( 0g `  S
) ) )  =  0 )
6838, 39nm0 18665 . . . . . 6  |-  ( S  e. NrmGrp  ->  ( L `  ( 0g `  S ) )  =  0 )
6935, 68syl 16 . . . . 5  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  ( L `  ( 0g `  S ) )  =  0 )
70 0re 9083 . . . . 5  |-  0  e.  RR
7169, 70syl6eqel 2523 . . . 4  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  ( L `  ( 0g `  S ) )  e.  RR )
7213nmoge0 18747 . . . . 5  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  ->  0  <_  ( N `  F )
)
7335, 17, 20, 72syl3anc 1184 . . . 4  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  0  <_  ( N `  F
) )
74 0le0 10073 . . . . 5  |-  0  <_  0
7574, 69syl5breqr 4240 . . . 4  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  0  <_  ( L `  ( 0g `  S ) ) )
7657, 71, 73, 75mulge0d 9595 . . 3  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  0  <_  ( ( N `  F )  x.  ( L `  ( 0g `  S ) ) ) )
7767, 76eqbrtrd 4224 . 2  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  ( M `  ( F `  ( 0g `  S
) ) )  <_ 
( ( N `  F )  x.  ( L `  ( 0g `  S ) ) ) )
785, 60, 77pm2.61ne 2673 1  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  ( M `  ( F `  X ) )  <_ 
( ( N `  F )  x.  ( L `  X )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   class class class wbr 4204   -->wf 5442   ` cfv 5446  (class class class)co 6073   RRcr 8981   0cc0 8982    x. cmul 8987    +oocpnf 9109   RR*cxr 9111    < clt 9112    <_ cle 9113    / cdiv 9669   RR+crp 10604   [,)cico 10910   Basecbs 13461   0gc0g 13715    GrpHom cghm 14995   normcnm 18616  NrmGrpcngp 18617   normOpcnmo 18731   NGHom cnghm 18732
This theorem is referenced by:  nmoix  18755  nmoeq0  18762  nmoco  18763  nmotri  18765  nmoid  18768  nmods  18770
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-n0 10214  df-z 10275  df-uz 10481  df-q 10567  df-rp 10605  df-xneg 10702  df-xadd 10703  df-xmul 10704  df-ico 10914  df-topgen 13659  df-0g 13719  df-mnd 14682  df-grp 14804  df-ghm 14996  df-psmet 16686  df-xmet 16687  df-met 16688  df-bl 16689  df-mopn 16690  df-top 16955  df-bases 16957  df-topon 16958  df-topsp 16959  df-xms 18342  df-ms 18343  df-nm 18622  df-ngp 18623  df-nmo 18734  df-nghm 18735
  Copyright terms: Public domain W3C validator