MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoi Unicode version

Theorem nmoi 18627
Description: The operator norm achieves the minimum of the set of upper bounds, if the operator is bounded. (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypotheses
Ref Expression
nmofval.1  |-  N  =  ( S normOp T )
nmoi.2  |-  V  =  ( Base `  S
)
nmoi.3  |-  L  =  ( norm `  S
)
nmoi.4  |-  M  =  ( norm `  T
)
Assertion
Ref Expression
nmoi  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  ( M `  ( F `  X ) )  <_ 
( ( N `  F )  x.  ( L `  X )
) )

Proof of Theorem nmoi
Dummy variables  r  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5662 . . . 4  |-  ( X  =  ( 0g `  S )  ->  ( F `  X )  =  ( F `  ( 0g `  S ) ) )
21fveq2d 5666 . . 3  |-  ( X  =  ( 0g `  S )  ->  ( M `  ( F `  X ) )  =  ( M `  ( F `  ( 0g `  S ) ) ) )
3 fveq2 5662 . . . 4  |-  ( X  =  ( 0g `  S )  ->  ( L `  X )  =  ( L `  ( 0g `  S ) ) )
43oveq2d 6030 . . 3  |-  ( X  =  ( 0g `  S )  ->  (
( N `  F
)  x.  ( L `
 X ) )  =  ( ( N `
 F )  x.  ( L `  ( 0g `  S ) ) ) )
52, 4breq12d 4160 . 2  |-  ( X  =  ( 0g `  S )  ->  (
( M `  ( F `  X )
)  <_  ( ( N `  F )  x.  ( L `  X
) )  <->  ( M `  ( F `  ( 0g `  S ) ) )  <_  ( ( N `  F )  x.  ( L `  ( 0g `  S ) ) ) ) )
6 fveq2 5662 . . . . . . . . . 10  |-  ( x  =  X  ->  ( F `  x )  =  ( F `  X ) )
76fveq2d 5666 . . . . . . . . 9  |-  ( x  =  X  ->  ( M `  ( F `  x ) )  =  ( M `  ( F `  X )
) )
8 fveq2 5662 . . . . . . . . . 10  |-  ( x  =  X  ->  ( L `  x )  =  ( L `  X ) )
98oveq2d 6030 . . . . . . . . 9  |-  ( x  =  X  ->  (
r  x.  ( L `
 x ) )  =  ( r  x.  ( L `  X
) ) )
107, 9breq12d 4160 . . . . . . . 8  |-  ( x  =  X  ->  (
( M `  ( F `  x )
)  <_  ( r  x.  ( L `  x
) )  <->  ( M `  ( F `  X
) )  <_  (
r  x.  ( L `
 X ) ) ) )
1110rspcv 2985 . . . . . . 7  |-  ( X  e.  V  ->  ( A. x  e.  V  ( M `  ( F `
 x ) )  <_  ( r  x.  ( L `  x
) )  ->  ( M `  ( F `  X ) )  <_ 
( r  x.  ( L `  X )
) ) )
1211ad3antlr 712 . . . . . 6  |-  ( ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V
)  /\  X  =/=  ( 0g `  S ) )  /\  r  e.  ( 0 [,)  +oo ) )  ->  ( A. x  e.  V  ( M `  ( F `
 x ) )  <_  ( r  x.  ( L `  x
) )  ->  ( M `  ( F `  X ) )  <_ 
( r  x.  ( L `  X )
) ) )
13 nmofval.1 . . . . . . . . . . . . . 14  |-  N  =  ( S normOp T )
1413isnghm 18622 . . . . . . . . . . . . 13  |-  ( F  e.  ( S NGHom  T
)  <->  ( ( S  e. NrmGrp  /\  T  e. NrmGrp )  /\  ( F  e.  ( S  GrpHom  T )  /\  ( N `  F )  e.  RR ) ) )
1514simplbi 447 . . . . . . . . . . . 12  |-  ( F  e.  ( S NGHom  T
)  ->  ( S  e. NrmGrp  /\  T  e. NrmGrp )
)
1615adantr 452 . . . . . . . . . . 11  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  ( S  e. NrmGrp  /\  T  e. NrmGrp
) )
1716simprd 450 . . . . . . . . . 10  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  T  e. NrmGrp )
1814simprbi 451 . . . . . . . . . . . . . 14  |-  ( F  e.  ( S NGHom  T
)  ->  ( F  e.  ( S  GrpHom  T )  /\  ( N `  F )  e.  RR ) )
1918adantr 452 . . . . . . . . . . . . 13  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  ( F  e.  ( S  GrpHom  T )  /\  ( N `  F )  e.  RR ) )
2019simpld 446 . . . . . . . . . . . 12  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  F  e.  ( S  GrpHom  T ) )
21 nmoi.2 . . . . . . . . . . . . 13  |-  V  =  ( Base `  S
)
22 eqid 2381 . . . . . . . . . . . . 13  |-  ( Base `  T )  =  (
Base `  T )
2321, 22ghmf 14931 . . . . . . . . . . . 12  |-  ( F  e.  ( S  GrpHom  T )  ->  F : V
--> ( Base `  T
) )
2420, 23syl 16 . . . . . . . . . . 11  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  F : V --> ( Base `  T
) )
25 ffvelrn 5801 . . . . . . . . . . 11  |-  ( ( F : V --> ( Base `  T )  /\  X  e.  V )  ->  ( F `  X )  e.  ( Base `  T
) )
2624, 25sylancom 649 . . . . . . . . . 10  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  ( F `  X )  e.  ( Base `  T
) )
27 nmoi.4 . . . . . . . . . . 11  |-  M  =  ( norm `  T
)
2822, 27nmcl 18527 . . . . . . . . . 10  |-  ( ( T  e. NrmGrp  /\  ( F `  X )  e.  ( Base `  T
) )  ->  ( M `  ( F `  X ) )  e.  RR )
2917, 26, 28syl2anc 643 . . . . . . . . 9  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  ( M `  ( F `  X ) )  e.  RR )
3029adantr 452 . . . . . . . 8  |-  ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V )  /\  X  =/=  ( 0g `  S ) )  ->  ( M `  ( F `  X ) )  e.  RR )
3130adantr 452 . . . . . . 7  |-  ( ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V
)  /\  X  =/=  ( 0g `  S ) )  /\  r  e.  ( 0 [,)  +oo ) )  ->  ( M `  ( F `  X ) )  e.  RR )
32 elrege0 10933 . . . . . . . . 9  |-  ( r  e.  ( 0 [,) 
+oo )  <->  ( r  e.  RR  /\  0  <_ 
r ) )
3332simplbi 447 . . . . . . . 8  |-  ( r  e.  ( 0 [,) 
+oo )  ->  r  e.  RR )
3433adantl 453 . . . . . . 7  |-  ( ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V
)  /\  X  =/=  ( 0g `  S ) )  /\  r  e.  ( 0 [,)  +oo ) )  ->  r  e.  RR )
3516simpld 446 . . . . . . . . . . 11  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  S  e. NrmGrp )
36 simpr 448 . . . . . . . . . . 11  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  X  e.  V )
3735, 36jca 519 . . . . . . . . . 10  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  ( S  e. NrmGrp  /\  X  e.  V ) )
38 nmoi.3 . . . . . . . . . . . 12  |-  L  =  ( norm `  S
)
39 eqid 2381 . . . . . . . . . . . 12  |-  ( 0g
`  S )  =  ( 0g `  S
)
4021, 38, 39nmrpcl 18531 . . . . . . . . . . 11  |-  ( ( S  e. NrmGrp  /\  X  e.  V  /\  X  =/=  ( 0g `  S
) )  ->  ( L `  X )  e.  RR+ )
41403expa 1153 . . . . . . . . . 10  |-  ( ( ( S  e. NrmGrp  /\  X  e.  V )  /\  X  =/=  ( 0g `  S
) )  ->  ( L `  X )  e.  RR+ )
4237, 41sylan 458 . . . . . . . . 9  |-  ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V )  /\  X  =/=  ( 0g `  S ) )  ->  ( L `  X )  e.  RR+ )
4342rpregt0d 10580 . . . . . . . 8  |-  ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V )  /\  X  =/=  ( 0g `  S ) )  ->  ( ( L `
 X )  e.  RR  /\  0  < 
( L `  X
) ) )
4443adantr 452 . . . . . . 7  |-  ( ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V
)  /\  X  =/=  ( 0g `  S ) )  /\  r  e.  ( 0 [,)  +oo ) )  ->  (
( L `  X
)  e.  RR  /\  0  <  ( L `  X ) ) )
45 ledivmul2 9813 . . . . . . 7  |-  ( ( ( M `  ( F `  X )
)  e.  RR  /\  r  e.  RR  /\  (
( L `  X
)  e.  RR  /\  0  <  ( L `  X ) ) )  ->  ( ( ( M `  ( F `
 X ) )  /  ( L `  X ) )  <_ 
r  <->  ( M `  ( F `  X ) )  <_  ( r  x.  ( L `  X
) ) ) )
4631, 34, 44, 45syl3anc 1184 . . . . . 6  |-  ( ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V
)  /\  X  =/=  ( 0g `  S ) )  /\  r  e.  ( 0 [,)  +oo ) )  ->  (
( ( M `  ( F `  X ) )  /  ( L `
 X ) )  <_  r  <->  ( M `  ( F `  X
) )  <_  (
r  x.  ( L `
 X ) ) ) )
4712, 46sylibrd 226 . . . . 5  |-  ( ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V
)  /\  X  =/=  ( 0g `  S ) )  /\  r  e.  ( 0 [,)  +oo ) )  ->  ( A. x  e.  V  ( M `  ( F `
 x ) )  <_  ( r  x.  ( L `  x
) )  ->  (
( M `  ( F `  X )
)  /  ( L `
 X ) )  <_  r ) )
4847ralrimiva 2726 . . . 4  |-  ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V )  /\  X  =/=  ( 0g `  S ) )  ->  A. r  e.  ( 0 [,)  +oo )
( A. x  e.  V  ( M `  ( F `  x ) )  <_  ( r  x.  ( L `  x
) )  ->  (
( M `  ( F `  X )
)  /  ( L `
 X ) )  <_  r ) )
4935adantr 452 . . . . 5  |-  ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V )  /\  X  =/=  ( 0g `  S ) )  ->  S  e. NrmGrp )
5017adantr 452 . . . . 5  |-  ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V )  /\  X  =/=  ( 0g `  S ) )  ->  T  e. NrmGrp )
5120adantr 452 . . . . 5  |-  ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V )  /\  X  =/=  ( 0g `  S ) )  ->  F  e.  ( S  GrpHom  T ) )
5230, 42rerpdivcld 10601 . . . . . 6  |-  ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V )  /\  X  =/=  ( 0g `  S ) )  ->  ( ( M `
 ( F `  X ) )  / 
( L `  X
) )  e.  RR )
5352rexrd 9061 . . . . 5  |-  ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V )  /\  X  =/=  ( 0g `  S ) )  ->  ( ( M `
 ( F `  X ) )  / 
( L `  X
) )  e.  RR* )
5413, 21, 38, 27nmogelb 18615 . . . . 5  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  /\  ( ( M `
 ( F `  X ) )  / 
( L `  X
) )  e.  RR* )  ->  ( ( ( M `  ( F `
 X ) )  /  ( L `  X ) )  <_ 
( N `  F
)  <->  A. r  e.  ( 0 [,)  +oo )
( A. x  e.  V  ( M `  ( F `  x ) )  <_  ( r  x.  ( L `  x
) )  ->  (
( M `  ( F `  X )
)  /  ( L `
 X ) )  <_  r ) ) )
5549, 50, 51, 53, 54syl31anc 1187 . . . 4  |-  ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V )  /\  X  =/=  ( 0g `  S ) )  ->  ( ( ( M `  ( F `
 X ) )  /  ( L `  X ) )  <_ 
( N `  F
)  <->  A. r  e.  ( 0 [,)  +oo )
( A. x  e.  V  ( M `  ( F `  x ) )  <_  ( r  x.  ( L `  x
) )  ->  (
( M `  ( F `  X )
)  /  ( L `
 X ) )  <_  r ) ) )
5648, 55mpbird 224 . . 3  |-  ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V )  /\  X  =/=  ( 0g `  S ) )  ->  ( ( M `
 ( F `  X ) )  / 
( L `  X
) )  <_  ( N `  F )
)
5719simprd 450 . . . . 5  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  ( N `  F )  e.  RR )
5857adantr 452 . . . 4  |-  ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V )  /\  X  =/=  ( 0g `  S ) )  ->  ( N `  F )  e.  RR )
5930, 58, 42ledivmul2d 10624 . . 3  |-  ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V )  /\  X  =/=  ( 0g `  S ) )  ->  ( ( ( M `  ( F `
 X ) )  /  ( L `  X ) )  <_ 
( N `  F
)  <->  ( M `  ( F `  X ) )  <_  ( ( N `  F )  x.  ( L `  X
) ) ) )
6056, 59mpbid 202 . 2  |-  ( ( ( F  e.  ( S NGHom  T )  /\  X  e.  V )  /\  X  =/=  ( 0g `  S ) )  ->  ( M `  ( F `  X ) )  <_  ( ( N `  F )  x.  ( L `  X
) ) )
61 eqid 2381 . . . . . . 7  |-  ( 0g
`  T )  =  ( 0g `  T
)
6239, 61ghmid 14933 . . . . . 6  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F `  ( 0g `  S
) )  =  ( 0g `  T ) )
6320, 62syl 16 . . . . 5  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  ( F `  ( 0g `  S ) )  =  ( 0g `  T
) )
6463fveq2d 5666 . . . 4  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  ( M `  ( F `  ( 0g `  S
) ) )  =  ( M `  ( 0g `  T ) ) )
6527, 61nm0 18538 . . . . 5  |-  ( T  e. NrmGrp  ->  ( M `  ( 0g `  T ) )  =  0 )
6617, 65syl 16 . . . 4  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  ( M `  ( 0g `  T ) )  =  0 )
6764, 66eqtrd 2413 . . 3  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  ( M `  ( F `  ( 0g `  S
) ) )  =  0 )
6838, 39nm0 18538 . . . . . 6  |-  ( S  e. NrmGrp  ->  ( L `  ( 0g `  S ) )  =  0 )
6935, 68syl 16 . . . . 5  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  ( L `  ( 0g `  S ) )  =  0 )
70 0re 9018 . . . . 5  |-  0  e.  RR
7169, 70syl6eqel 2469 . . . 4  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  ( L `  ( 0g `  S ) )  e.  RR )
7213nmoge0 18620 . . . . 5  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  ->  0  <_  ( N `  F )
)
7335, 17, 20, 72syl3anc 1184 . . . 4  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  0  <_  ( N `  F
) )
74 0le0 10007 . . . . 5  |-  0  <_  0
7574, 69syl5breqr 4183 . . . 4  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  0  <_  ( L `  ( 0g `  S ) ) )
7657, 71, 73, 75mulge0d 9529 . . 3  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  0  <_  ( ( N `  F )  x.  ( L `  ( 0g `  S ) ) ) )
7767, 76eqbrtrd 4167 . 2  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  ( M `  ( F `  ( 0g `  S
) ) )  <_ 
( ( N `  F )  x.  ( L `  ( 0g `  S ) ) ) )
785, 60, 77pm2.61ne 2619 1  |-  ( ( F  e.  ( S NGHom 
T )  /\  X  e.  V )  ->  ( M `  ( F `  X ) )  <_ 
( ( N `  F )  x.  ( L `  X )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2544   A.wral 2643   class class class wbr 4147   -->wf 5384   ` cfv 5388  (class class class)co 6014   RRcr 8916   0cc0 8917    x. cmul 8922    +oocpnf 9044   RR*cxr 9046    < clt 9047    <_ cle 9048    / cdiv 9603   RR+crp 10538   [,)cico 10844   Basecbs 13390   0gc0g 13644    GrpHom cghm 14924   normcnm 18489  NrmGrpcngp 18490   normOpcnmo 18604   NGHom cnghm 18605
This theorem is referenced by:  nmoix  18628  nmoeq0  18635  nmoco  18636  nmotri  18638  nmoid  18641  nmods  18643
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2362  ax-rep 4255  ax-sep 4265  ax-nul 4273  ax-pow 4312  ax-pr 4338  ax-un 4635  ax-cnex 8973  ax-resscn 8974  ax-1cn 8975  ax-icn 8976  ax-addcl 8977  ax-addrcl 8978  ax-mulcl 8979  ax-mulrcl 8980  ax-mulcom 8981  ax-addass 8982  ax-mulass 8983  ax-distr 8984  ax-i2m1 8985  ax-1ne0 8986  ax-1rid 8987  ax-rnegex 8988  ax-rrecex 8989  ax-cnre 8990  ax-pre-lttri 8991  ax-pre-lttrn 8992  ax-pre-ltadd 8993  ax-pre-mulgt0 8994  ax-pre-sup 8995
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2236  df-mo 2237  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2506  df-ne 2546  df-nel 2547  df-ral 2648  df-rex 2649  df-reu 2650  df-rmo 2651  df-rab 2652  df-v 2895  df-sbc 3099  df-csb 3189  df-dif 3260  df-un 3262  df-in 3264  df-ss 3271  df-pss 3273  df-nul 3566  df-if 3677  df-pw 3738  df-sn 3757  df-pr 3758  df-tp 3759  df-op 3760  df-uni 3952  df-iun 4031  df-br 4148  df-opab 4202  df-mpt 4203  df-tr 4238  df-eprel 4429  df-id 4433  df-po 4438  df-so 4439  df-fr 4476  df-we 4478  df-ord 4519  df-on 4520  df-lim 4521  df-suc 4522  df-om 4780  df-xp 4818  df-rel 4819  df-cnv 4820  df-co 4821  df-dm 4822  df-rn 4823  df-res 4824  df-ima 4825  df-iota 5352  df-fun 5390  df-fn 5391  df-f 5392  df-f1 5393  df-fo 5394  df-f1o 5395  df-fv 5396  df-ov 6017  df-oprab 6018  df-mpt2 6019  df-1st 6282  df-2nd 6283  df-riota 6479  df-recs 6563  df-rdg 6598  df-er 6835  df-map 6950  df-en 7040  df-dom 7041  df-sdom 7042  df-sup 7375  df-pnf 9049  df-mnf 9050  df-xr 9051  df-ltxr 9052  df-le 9053  df-sub 9219  df-neg 9220  df-div 9604  df-nn 9927  df-2 9984  df-n0 10148  df-z 10209  df-uz 10415  df-q 10501  df-rp 10539  df-xneg 10636  df-xadd 10637  df-xmul 10638  df-ico 10848  df-topgen 13588  df-0g 13648  df-mnd 14611  df-grp 14733  df-ghm 14925  df-xmet 16613  df-met 16614  df-bl 16615  df-mopn 16616  df-top 16880  df-bases 16882  df-topon 16883  df-topsp 16884  df-xms 18253  df-ms 18254  df-nm 18495  df-ngp 18496  df-nmo 18607  df-nghm 18608
  Copyright terms: Public domain W3C validator