MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoleub Structured version   Unicode version

Theorem nmoleub 18770
Description: The operator norm, defined as an infimum of upper bounds, can also be defined as a supremum of norms of  F ( x ) away from zero. (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypotheses
Ref Expression
nmofval.1  |-  N  =  ( S normOp T )
nmoi.2  |-  V  =  ( Base `  S
)
nmoi.3  |-  L  =  ( norm `  S
)
nmoi.4  |-  M  =  ( norm `  T
)
nmoleub.z  |-  .0.  =  ( 0g `  S )
nmoleub.1  |-  ( ph  ->  S  e. NrmGrp )
nmoleub.2  |-  ( ph  ->  T  e. NrmGrp )
nmoleub.3  |-  ( ph  ->  F  e.  ( S 
GrpHom  T ) )
nmoleub.4  |-  ( ph  ->  A  e.  RR* )
nmoleub.5  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
nmoleub  |-  ( ph  ->  ( ( N `  F )  <_  A  <->  A. x  e.  V  ( x  =/=  .0.  ->  ( ( M `  ( F `  x )
)  /  ( L `
 x ) )  <_  A ) ) )
Distinct variable groups:    x, L    x, M    x, S    x, T    x, A    x, F    ph, x    x, V    x, N
Allowed substitution hint:    .0. ( x)

Proof of Theorem nmoleub
StepHypRef Expression
1 nmoleub.2 . . . . . . . . 9  |-  ( ph  ->  T  e. NrmGrp )
21ad2antrr 708 . . . . . . . 8  |-  ( ( ( ph  /\  ( N `  F )  <_  A )  /\  (
x  e.  V  /\  x  =/=  .0.  ) )  ->  T  e. NrmGrp )
3 nmoleub.3 . . . . . . . . . . 11  |-  ( ph  ->  F  e.  ( S 
GrpHom  T ) )
4 nmoi.2 . . . . . . . . . . . 12  |-  V  =  ( Base `  S
)
5 eqid 2438 . . . . . . . . . . . 12  |-  ( Base `  T )  =  (
Base `  T )
64, 5ghmf 15015 . . . . . . . . . . 11  |-  ( F  e.  ( S  GrpHom  T )  ->  F : V
--> ( Base `  T
) )
73, 6syl 16 . . . . . . . . . 10  |-  ( ph  ->  F : V --> ( Base `  T ) )
87ad2antrr 708 . . . . . . . . 9  |-  ( ( ( ph  /\  ( N `  F )  <_  A )  /\  (
x  e.  V  /\  x  =/=  .0.  ) )  ->  F : V --> ( Base `  T )
)
9 simprl 734 . . . . . . . . 9  |-  ( ( ( ph  /\  ( N `  F )  <_  A )  /\  (
x  e.  V  /\  x  =/=  .0.  ) )  ->  x  e.  V
)
10 ffvelrn 5871 . . . . . . . . 9  |-  ( ( F : V --> ( Base `  T )  /\  x  e.  V )  ->  ( F `  x )  e.  ( Base `  T
) )
118, 9, 10syl2anc 644 . . . . . . . 8  |-  ( ( ( ph  /\  ( N `  F )  <_  A )  /\  (
x  e.  V  /\  x  =/=  .0.  ) )  ->  ( F `  x )  e.  (
Base `  T )
)
12 nmoi.4 . . . . . . . . 9  |-  M  =  ( norm `  T
)
135, 12nmcl 18667 . . . . . . . 8  |-  ( ( T  e. NrmGrp  /\  ( F `  x )  e.  ( Base `  T
) )  ->  ( M `  ( F `  x ) )  e.  RR )
142, 11, 13syl2anc 644 . . . . . . 7  |-  ( ( ( ph  /\  ( N `  F )  <_  A )  /\  (
x  e.  V  /\  x  =/=  .0.  ) )  ->  ( M `  ( F `  x ) )  e.  RR )
15 nmoleub.1 . . . . . . . . 9  |-  ( ph  ->  S  e. NrmGrp )
1615adantr 453 . . . . . . . 8  |-  ( (
ph  /\  ( N `  F )  <_  A
)  ->  S  e. NrmGrp )
17 nmoi.3 . . . . . . . . . 10  |-  L  =  ( norm `  S
)
18 nmoleub.z . . . . . . . . . 10  |-  .0.  =  ( 0g `  S )
194, 17, 18nmrpcl 18671 . . . . . . . . 9  |-  ( ( S  e. NrmGrp  /\  x  e.  V  /\  x  =/=  .0.  )  ->  ( L `  x )  e.  RR+ )
20193expb 1155 . . . . . . . 8  |-  ( ( S  e. NrmGrp  /\  (
x  e.  V  /\  x  =/=  .0.  ) )  ->  ( L `  x )  e.  RR+ )
2116, 20sylan 459 . . . . . . 7  |-  ( ( ( ph  /\  ( N `  F )  <_  A )  /\  (
x  e.  V  /\  x  =/=  .0.  ) )  ->  ( L `  x )  e.  RR+ )
2214, 21rerpdivcld 10680 . . . . . 6  |-  ( ( ( ph  /\  ( N `  F )  <_  A )  /\  (
x  e.  V  /\  x  =/=  .0.  ) )  ->  ( ( M `
 ( F `  x ) )  / 
( L `  x
) )  e.  RR )
2322rexrd 9139 . . . . 5  |-  ( ( ( ph  /\  ( N `  F )  <_  A )  /\  (
x  e.  V  /\  x  =/=  .0.  ) )  ->  ( ( M `
 ( F `  x ) )  / 
( L `  x
) )  e.  RR* )
24 nmofval.1 . . . . . . . 8  |-  N  =  ( S normOp T )
2524nmocl 18759 . . . . . . 7  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  ->  ( N `  F )  e.  RR* )
2615, 1, 3, 25syl3anc 1185 . . . . . 6  |-  ( ph  ->  ( N `  F
)  e.  RR* )
2726ad2antrr 708 . . . . 5  |-  ( ( ( ph  /\  ( N `  F )  <_  A )  /\  (
x  e.  V  /\  x  =/=  .0.  ) )  ->  ( N `  F )  e.  RR* )
28 nmoleub.4 . . . . . 6  |-  ( ph  ->  A  e.  RR* )
2928ad2antrr 708 . . . . 5  |-  ( ( ( ph  /\  ( N `  F )  <_  A )  /\  (
x  e.  V  /\  x  =/=  .0.  ) )  ->  A  e.  RR* )
3015, 1, 33jca 1135 . . . . . . 7  |-  ( ph  ->  ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) ) )
3130adantr 453 . . . . . 6  |-  ( (
ph  /\  ( N `  F )  <_  A
)  ->  ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) ) )
3224, 4, 17, 12, 18nmoi2 18769 . . . . . 6  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  /\  ( x  e.  V  /\  x  =/= 
.0.  ) )  -> 
( ( M `  ( F `  x ) )  /  ( L `
 x ) )  <_  ( N `  F ) )
3331, 32sylan 459 . . . . 5  |-  ( ( ( ph  /\  ( N `  F )  <_  A )  /\  (
x  e.  V  /\  x  =/=  .0.  ) )  ->  ( ( M `
 ( F `  x ) )  / 
( L `  x
) )  <_  ( N `  F )
)
34 simplr 733 . . . . 5  |-  ( ( ( ph  /\  ( N `  F )  <_  A )  /\  (
x  e.  V  /\  x  =/=  .0.  ) )  ->  ( N `  F )  <_  A
)
3523, 27, 29, 33, 34xrletrd 10757 . . . 4  |-  ( ( ( ph  /\  ( N `  F )  <_  A )  /\  (
x  e.  V  /\  x  =/=  .0.  ) )  ->  ( ( M `
 ( F `  x ) )  / 
( L `  x
) )  <_  A
)
3635expr 600 . . 3  |-  ( ( ( ph  /\  ( N `  F )  <_  A )  /\  x  e.  V )  ->  (
x  =/=  .0.  ->  ( ( M `  ( F `  x )
)  /  ( L `
 x ) )  <_  A ) )
3736ralrimiva 2791 . 2  |-  ( (
ph  /\  ( N `  F )  <_  A
)  ->  A. x  e.  V  ( x  =/=  .0.  ->  ( ( M `  ( F `  x ) )  / 
( L `  x
) )  <_  A
) )
38 0le0 10086 . . . . . . . . . . 11  |-  0  <_  0
39 simpllr 737 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =  .0.  )  ->  A  e.  RR )
4039recnd 9119 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =  .0.  )  ->  A  e.  CC )
4140mul01d 9270 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =  .0.  )  ->  ( A  x.  0 )  =  0 )
4238, 41syl5breqr 4251 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =  .0.  )  ->  0  <_ 
( A  x.  0 ) )
43 fveq2 5731 . . . . . . . . . . . . 13  |-  ( x  =  .0.  ->  ( F `  x )  =  ( F `  .0.  ) )
443ad2antrr 708 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V )  ->  F  e.  ( S  GrpHom  T ) )
45 eqid 2438 . . . . . . . . . . . . . . 15  |-  ( 0g
`  T )  =  ( 0g `  T
)
4618, 45ghmid 15017 . . . . . . . . . . . . . 14  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F `  .0.  )  =  ( 0g `  T ) )
4744, 46syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V )  ->  ( F `  .0.  )  =  ( 0g `  T
) )
4843, 47sylan9eqr 2492 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =  .0.  )  ->  ( F `
 x )  =  ( 0g `  T
) )
4948fveq2d 5735 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =  .0.  )  ->  ( M `
 ( F `  x ) )  =  ( M `  ( 0g `  T ) ) )
501ad3antrrr 712 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =  .0.  )  ->  T  e. NrmGrp
)
5112, 45nm0 18678 . . . . . . . . . . . 12  |-  ( T  e. NrmGrp  ->  ( M `  ( 0g `  T ) )  =  0 )
5250, 51syl 16 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =  .0.  )  ->  ( M `
 ( 0g `  T ) )  =  0 )
5349, 52eqtrd 2470 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =  .0.  )  ->  ( M `
 ( F `  x ) )  =  0 )
54 fveq2 5731 . . . . . . . . . . . 12  |-  ( x  =  .0.  ->  ( L `  x )  =  ( L `  .0.  ) )
5515ad2antrr 708 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V )  ->  S  e. NrmGrp )
5617, 18nm0 18678 . . . . . . . . . . . . 13  |-  ( S  e. NrmGrp  ->  ( L `  .0.  )  =  0
)
5755, 56syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V )  ->  ( L `  .0.  )  =  0 )
5854, 57sylan9eqr 2492 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =  .0.  )  ->  ( L `
 x )  =  0 )
5958oveq2d 6100 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =  .0.  )  ->  ( A  x.  ( L `  x ) )  =  ( A  x.  0 ) )
6042, 53, 593brtr4d 4245 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =  .0.  )  ->  ( M `
 ( F `  x ) )  <_ 
( A  x.  ( L `  x )
) )
6160a1d 24 . . . . . . . 8  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =  .0.  )  ->  ( ( x  =/=  .0.  ->  ( ( M `  ( F `  x )
)  /  ( L `
 x ) )  <_  A )  -> 
( M `  ( F `  x )
)  <_  ( A  x.  ( L `  x
) ) ) )
62 simpr 449 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =/=  .0.  )  ->  x  =/= 
.0.  )
631ad2antrr 708 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V )  ->  T  e. NrmGrp )
647adantr 453 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  A  e.  RR )  ->  F : V
--> ( Base `  T
) )
6564, 10sylan 459 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V )  ->  ( F `  x )  e.  ( Base `  T
) )
6663, 65, 13syl2anc 644 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V )  ->  ( M `  ( F `  x ) )  e.  RR )
6766adantr 453 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =/=  .0.  )  ->  ( M `
 ( F `  x ) )  e.  RR )
68 simpllr 737 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =/=  .0.  )  ->  A  e.  RR )
6915adantr 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  e.  RR )  ->  S  e. NrmGrp
)
70193expa 1154 . . . . . . . . . . . 12  |-  ( ( ( S  e. NrmGrp  /\  x  e.  V )  /\  x  =/=  .0.  )  ->  ( L `  x )  e.  RR+ )
7169, 70sylanl1 633 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =/=  .0.  )  ->  ( L `
 x )  e.  RR+ )
7267, 68, 71ledivmul2d 10703 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =/=  .0.  )  ->  ( ( ( M `  ( F `  x )
)  /  ( L `
 x ) )  <_  A  <->  ( M `  ( F `  x
) )  <_  ( A  x.  ( L `  x ) ) ) )
7372biimpd 200 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =/=  .0.  )  ->  ( ( ( M `  ( F `  x )
)  /  ( L `
 x ) )  <_  A  ->  ( M `  ( F `  x ) )  <_ 
( A  x.  ( L `  x )
) ) )
7462, 73embantd 53 . . . . . . . 8  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =/=  .0.  )  ->  ( ( x  =/=  .0.  ->  ( ( M `  ( F `  x )
)  /  ( L `
 x ) )  <_  A )  -> 
( M `  ( F `  x )
)  <_  ( A  x.  ( L `  x
) ) ) )
7561, 74pm2.61dane 2684 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V )  ->  (
( x  =/=  .0.  ->  ( ( M `  ( F `  x ) )  /  ( L `
 x ) )  <_  A )  -> 
( M `  ( F `  x )
)  <_  ( A  x.  ( L `  x
) ) ) )
7675ralimdva 2786 . . . . . 6  |-  ( (
ph  /\  A  e.  RR )  ->  ( A. x  e.  V  (
x  =/=  .0.  ->  ( ( M `  ( F `  x )
)  /  ( L `
 x ) )  <_  A )  ->  A. x  e.  V  ( M `  ( F `
 x ) )  <_  ( A  x.  ( L `  x ) ) ) )
771adantr 453 . . . . . . 7  |-  ( (
ph  /\  A  e.  RR )  ->  T  e. NrmGrp
)
783adantr 453 . . . . . . 7  |-  ( (
ph  /\  A  e.  RR )  ->  F  e.  ( S  GrpHom  T ) )
79 simpr 449 . . . . . . 7  |-  ( (
ph  /\  A  e.  RR )  ->  A  e.  RR )
80 nmoleub.5 . . . . . . . 8  |-  ( ph  ->  0  <_  A )
8180adantr 453 . . . . . . 7  |-  ( (
ph  /\  A  e.  RR )  ->  0  <_  A )
8224, 4, 17, 12nmolb 18756 . . . . . . 7  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  /\  A  e.  RR  /\  0  <_  A )  ->  ( A. x  e.  V  ( M `  ( F `  x ) )  <_  ( A  x.  ( L `  x
) )  ->  ( N `  F )  <_  A ) )
8369, 77, 78, 79, 81, 82syl311anc 1199 . . . . . 6  |-  ( (
ph  /\  A  e.  RR )  ->  ( A. x  e.  V  ( M `  ( F `  x ) )  <_ 
( A  x.  ( L `  x )
)  ->  ( N `  F )  <_  A
) )
8476, 83syld 43 . . . . 5  |-  ( (
ph  /\  A  e.  RR )  ->  ( A. x  e.  V  (
x  =/=  .0.  ->  ( ( M `  ( F `  x )
)  /  ( L `
 x ) )  <_  A )  -> 
( N `  F
)  <_  A )
)
8584imp 420 . . . 4  |-  ( ( ( ph  /\  A  e.  RR )  /\  A. x  e.  V  (
x  =/=  .0.  ->  ( ( M `  ( F `  x )
)  /  ( L `
 x ) )  <_  A ) )  ->  ( N `  F )  <_  A
)
8685an32s 781 . . 3  |-  ( ( ( ph  /\  A. x  e.  V  (
x  =/=  .0.  ->  ( ( M `  ( F `  x )
)  /  ( L `
 x ) )  <_  A ) )  /\  A  e.  RR )  ->  ( N `  F )  <_  A
)
8726ad2antrr 708 . . . . 5  |-  ( ( ( ph  /\  A. x  e.  V  (
x  =/=  .0.  ->  ( ( M `  ( F `  x )
)  /  ( L `
 x ) )  <_  A ) )  /\  A  =  +oo )  ->  ( N `  F )  e.  RR* )
88 pnfge 10732 . . . . 5  |-  ( ( N `  F )  e.  RR*  ->  ( N `
 F )  <_  +oo )
8987, 88syl 16 . . . 4  |-  ( ( ( ph  /\  A. x  e.  V  (
x  =/=  .0.  ->  ( ( M `  ( F `  x )
)  /  ( L `
 x ) )  <_  A ) )  /\  A  =  +oo )  ->  ( N `  F )  <_  +oo )
90 simpr 449 . . . 4  |-  ( ( ( ph  /\  A. x  e.  V  (
x  =/=  .0.  ->  ( ( M `  ( F `  x )
)  /  ( L `
 x ) )  <_  A ) )  /\  A  =  +oo )  ->  A  =  +oo )
9189, 90breqtrrd 4241 . . 3  |-  ( ( ( ph  /\  A. x  e.  V  (
x  =/=  .0.  ->  ( ( M `  ( F `  x )
)  /  ( L `
 x ) )  <_  A ) )  /\  A  =  +oo )  ->  ( N `  F )  <_  A
)
92 ge0nemnf 10766 . . . . . . 7  |-  ( ( A  e.  RR*  /\  0  <_  A )  ->  A  =/=  -oo )
9328, 80, 92syl2anc 644 . . . . . 6  |-  ( ph  ->  A  =/=  -oo )
9428, 93jca 520 . . . . 5  |-  ( ph  ->  ( A  e.  RR*  /\  A  =/=  -oo )
)
95 xrnemnf 10723 . . . . 5  |-  ( ( A  e.  RR*  /\  A  =/=  -oo )  <->  ( A  e.  RR  \/  A  = 
+oo ) )
9694, 95sylib 190 . . . 4  |-  ( ph  ->  ( A  e.  RR  \/  A  =  +oo ) )
9796adantr 453 . . 3  |-  ( (
ph  /\  A. x  e.  V  ( x  =/=  .0.  ->  ( ( M `  ( F `  x ) )  / 
( L `  x
) )  <_  A
) )  ->  ( A  e.  RR  \/  A  =  +oo ) )
9886, 91, 97mpjaodan 763 . 2  |-  ( (
ph  /\  A. x  e.  V  ( x  =/=  .0.  ->  ( ( M `  ( F `  x ) )  / 
( L `  x
) )  <_  A
) )  ->  ( N `  F )  <_  A )
9937, 98impbida 807 1  |-  ( ph  ->  ( ( N `  F )  <_  A  <->  A. x  e.  V  ( x  =/=  .0.  ->  ( ( M `  ( F `  x )
)  /  ( L `
 x ) )  <_  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   class class class wbr 4215   -->wf 5453   ` cfv 5457  (class class class)co 6084   RRcr 8994   0cc0 8995    x. cmul 9000    +oocpnf 9122    -oocmnf 9123   RR*cxr 9124    <_ cle 9126    / cdiv 9682   RR+crp 10617   Basecbs 13474   0gc0g 13728    GrpHom cghm 15008   normcnm 18629  NrmGrpcngp 18630   normOpcnmo 18744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-er 6908  df-map 7023  df-en 7113  df-dom 7114  df-sdom 7115  df-sup 7449  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-n0 10227  df-z 10288  df-uz 10494  df-q 10580  df-rp 10618  df-xneg 10715  df-xadd 10716  df-xmul 10717  df-ico 10927  df-topgen 13672  df-0g 13732  df-mnd 14695  df-grp 14817  df-ghm 15009  df-psmet 16699  df-xmet 16700  df-met 16701  df-bl 16702  df-mopn 16703  df-top 16968  df-bases 16970  df-topon 16971  df-topsp 16972  df-xms 18355  df-ms 18356  df-nm 18635  df-ngp 18636  df-nmo 18747  df-nghm 18748
  Copyright terms: Public domain W3C validator