MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoleub Unicode version

Theorem nmoleub 18240
Description: The operator norm, defined as an infimum of upper bounds, can also be defined as a supremum of norms of  F ( x ) away from zero. (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypotheses
Ref Expression
nmofval.1  |-  N  =  ( S normOp T )
nmoi.2  |-  V  =  ( Base `  S
)
nmoi.3  |-  L  =  ( norm `  S
)
nmoi.4  |-  M  =  ( norm `  T
)
nmoleub.z  |-  .0.  =  ( 0g `  S )
nmoleub.1  |-  ( ph  ->  S  e. NrmGrp )
nmoleub.2  |-  ( ph  ->  T  e. NrmGrp )
nmoleub.3  |-  ( ph  ->  F  e.  ( S 
GrpHom  T ) )
nmoleub.4  |-  ( ph  ->  A  e.  RR* )
nmoleub.5  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
nmoleub  |-  ( ph  ->  ( ( N `  F )  <_  A  <->  A. x  e.  V  ( x  =/=  .0.  ->  ( ( M `  ( F `  x )
)  /  ( L `
 x ) )  <_  A ) ) )
Distinct variable groups:    x, L    x, M    x, S    x, T    x, A    x, F    ph, x    x, V    x, N
Allowed substitution hint:    .0. ( x)

Proof of Theorem nmoleub
StepHypRef Expression
1 nmoleub.2 . . . . . . . . 9  |-  ( ph  ->  T  e. NrmGrp )
21ad2antrr 706 . . . . . . . 8  |-  ( ( ( ph  /\  ( N `  F )  <_  A )  /\  (
x  e.  V  /\  x  =/=  .0.  ) )  ->  T  e. NrmGrp )
3 nmoleub.3 . . . . . . . . . . 11  |-  ( ph  ->  F  e.  ( S 
GrpHom  T ) )
4 nmoi.2 . . . . . . . . . . . 12  |-  V  =  ( Base `  S
)
5 eqid 2283 . . . . . . . . . . . 12  |-  ( Base `  T )  =  (
Base `  T )
64, 5ghmf 14687 . . . . . . . . . . 11  |-  ( F  e.  ( S  GrpHom  T )  ->  F : V
--> ( Base `  T
) )
73, 6syl 15 . . . . . . . . . 10  |-  ( ph  ->  F : V --> ( Base `  T ) )
87ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  ( N `  F )  <_  A )  /\  (
x  e.  V  /\  x  =/=  .0.  ) )  ->  F : V --> ( Base `  T )
)
9 simprl 732 . . . . . . . . 9  |-  ( ( ( ph  /\  ( N `  F )  <_  A )  /\  (
x  e.  V  /\  x  =/=  .0.  ) )  ->  x  e.  V
)
10 ffvelrn 5663 . . . . . . . . 9  |-  ( ( F : V --> ( Base `  T )  /\  x  e.  V )  ->  ( F `  x )  e.  ( Base `  T
) )
118, 9, 10syl2anc 642 . . . . . . . 8  |-  ( ( ( ph  /\  ( N `  F )  <_  A )  /\  (
x  e.  V  /\  x  =/=  .0.  ) )  ->  ( F `  x )  e.  (
Base `  T )
)
12 nmoi.4 . . . . . . . . 9  |-  M  =  ( norm `  T
)
135, 12nmcl 18137 . . . . . . . 8  |-  ( ( T  e. NrmGrp  /\  ( F `  x )  e.  ( Base `  T
) )  ->  ( M `  ( F `  x ) )  e.  RR )
142, 11, 13syl2anc 642 . . . . . . 7  |-  ( ( ( ph  /\  ( N `  F )  <_  A )  /\  (
x  e.  V  /\  x  =/=  .0.  ) )  ->  ( M `  ( F `  x ) )  e.  RR )
15 nmoleub.1 . . . . . . . . 9  |-  ( ph  ->  S  e. NrmGrp )
1615adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( N `  F )  <_  A
)  ->  S  e. NrmGrp )
17 nmoi.3 . . . . . . . . . 10  |-  L  =  ( norm `  S
)
18 nmoleub.z . . . . . . . . . 10  |-  .0.  =  ( 0g `  S )
194, 17, 18nmrpcl 18141 . . . . . . . . 9  |-  ( ( S  e. NrmGrp  /\  x  e.  V  /\  x  =/=  .0.  )  ->  ( L `  x )  e.  RR+ )
20193expb 1152 . . . . . . . 8  |-  ( ( S  e. NrmGrp  /\  (
x  e.  V  /\  x  =/=  .0.  ) )  ->  ( L `  x )  e.  RR+ )
2116, 20sylan 457 . . . . . . 7  |-  ( ( ( ph  /\  ( N `  F )  <_  A )  /\  (
x  e.  V  /\  x  =/=  .0.  ) )  ->  ( L `  x )  e.  RR+ )
2214, 21rerpdivcld 10417 . . . . . 6  |-  ( ( ( ph  /\  ( N `  F )  <_  A )  /\  (
x  e.  V  /\  x  =/=  .0.  ) )  ->  ( ( M `
 ( F `  x ) )  / 
( L `  x
) )  e.  RR )
2322rexrd 8881 . . . . 5  |-  ( ( ( ph  /\  ( N `  F )  <_  A )  /\  (
x  e.  V  /\  x  =/=  .0.  ) )  ->  ( ( M `
 ( F `  x ) )  / 
( L `  x
) )  e.  RR* )
24 nmofval.1 . . . . . . . 8  |-  N  =  ( S normOp T )
2524nmocl 18229 . . . . . . 7  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  ->  ( N `  F )  e.  RR* )
2615, 1, 3, 25syl3anc 1182 . . . . . 6  |-  ( ph  ->  ( N `  F
)  e.  RR* )
2726ad2antrr 706 . . . . 5  |-  ( ( ( ph  /\  ( N `  F )  <_  A )  /\  (
x  e.  V  /\  x  =/=  .0.  ) )  ->  ( N `  F )  e.  RR* )
28 nmoleub.4 . . . . . 6  |-  ( ph  ->  A  e.  RR* )
2928ad2antrr 706 . . . . 5  |-  ( ( ( ph  /\  ( N `  F )  <_  A )  /\  (
x  e.  V  /\  x  =/=  .0.  ) )  ->  A  e.  RR* )
3015, 1, 33jca 1132 . . . . . . 7  |-  ( ph  ->  ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) ) )
3130adantr 451 . . . . . 6  |-  ( (
ph  /\  ( N `  F )  <_  A
)  ->  ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) ) )
3224, 4, 17, 12, 18nmoi2 18239 . . . . . 6  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  /\  ( x  e.  V  /\  x  =/= 
.0.  ) )  -> 
( ( M `  ( F `  x ) )  /  ( L `
 x ) )  <_  ( N `  F ) )
3331, 32sylan 457 . . . . 5  |-  ( ( ( ph  /\  ( N `  F )  <_  A )  /\  (
x  e.  V  /\  x  =/=  .0.  ) )  ->  ( ( M `
 ( F `  x ) )  / 
( L `  x
) )  <_  ( N `  F )
)
34 simplr 731 . . . . 5  |-  ( ( ( ph  /\  ( N `  F )  <_  A )  /\  (
x  e.  V  /\  x  =/=  .0.  ) )  ->  ( N `  F )  <_  A
)
3523, 27, 29, 33, 34xrletrd 10493 . . . 4  |-  ( ( ( ph  /\  ( N `  F )  <_  A )  /\  (
x  e.  V  /\  x  =/=  .0.  ) )  ->  ( ( M `
 ( F `  x ) )  / 
( L `  x
) )  <_  A
)
3635expr 598 . . 3  |-  ( ( ( ph  /\  ( N `  F )  <_  A )  /\  x  e.  V )  ->  (
x  =/=  .0.  ->  ( ( M `  ( F `  x )
)  /  ( L `
 x ) )  <_  A ) )
3736ralrimiva 2626 . 2  |-  ( (
ph  /\  ( N `  F )  <_  A
)  ->  A. x  e.  V  ( x  =/=  .0.  ->  ( ( M `  ( F `  x ) )  / 
( L `  x
) )  <_  A
) )
38 0le0 9827 . . . . . . . . . . 11  |-  0  <_  0
39 simpllr 735 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =  .0.  )  ->  A  e.  RR )
4039recnd 8861 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =  .0.  )  ->  A  e.  CC )
4140mul01d 9011 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =  .0.  )  ->  ( A  x.  0 )  =  0 )
4238, 41syl5breqr 4059 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =  .0.  )  ->  0  <_ 
( A  x.  0 ) )
43 fveq2 5525 . . . . . . . . . . . . 13  |-  ( x  =  .0.  ->  ( F `  x )  =  ( F `  .0.  ) )
443ad2antrr 706 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V )  ->  F  e.  ( S  GrpHom  T ) )
45 eqid 2283 . . . . . . . . . . . . . . 15  |-  ( 0g
`  T )  =  ( 0g `  T
)
4618, 45ghmid 14689 . . . . . . . . . . . . . 14  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F `  .0.  )  =  ( 0g `  T ) )
4744, 46syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V )  ->  ( F `  .0.  )  =  ( 0g `  T
) )
4843, 47sylan9eqr 2337 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =  .0.  )  ->  ( F `
 x )  =  ( 0g `  T
) )
4948fveq2d 5529 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =  .0.  )  ->  ( M `
 ( F `  x ) )  =  ( M `  ( 0g `  T ) ) )
501ad3antrrr 710 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =  .0.  )  ->  T  e. NrmGrp
)
5112, 45nm0 18148 . . . . . . . . . . . 12  |-  ( T  e. NrmGrp  ->  ( M `  ( 0g `  T ) )  =  0 )
5250, 51syl 15 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =  .0.  )  ->  ( M `
 ( 0g `  T ) )  =  0 )
5349, 52eqtrd 2315 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =  .0.  )  ->  ( M `
 ( F `  x ) )  =  0 )
54 fveq2 5525 . . . . . . . . . . . 12  |-  ( x  =  .0.  ->  ( L `  x )  =  ( L `  .0.  ) )
5515ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V )  ->  S  e. NrmGrp )
5617, 18nm0 18148 . . . . . . . . . . . . 13  |-  ( S  e. NrmGrp  ->  ( L `  .0.  )  =  0
)
5755, 56syl 15 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V )  ->  ( L `  .0.  )  =  0 )
5854, 57sylan9eqr 2337 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =  .0.  )  ->  ( L `
 x )  =  0 )
5958oveq2d 5874 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =  .0.  )  ->  ( A  x.  ( L `  x ) )  =  ( A  x.  0 ) )
6042, 53, 593brtr4d 4053 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =  .0.  )  ->  ( M `
 ( F `  x ) )  <_ 
( A  x.  ( L `  x )
) )
6160a1d 22 . . . . . . . 8  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =  .0.  )  ->  ( ( x  =/=  .0.  ->  ( ( M `  ( F `  x )
)  /  ( L `
 x ) )  <_  A )  -> 
( M `  ( F `  x )
)  <_  ( A  x.  ( L `  x
) ) ) )
62 simpr 447 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =/=  .0.  )  ->  x  =/= 
.0.  )
631ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V )  ->  T  e. NrmGrp )
647adantr 451 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  A  e.  RR )  ->  F : V
--> ( Base `  T
) )
6564, 10sylan 457 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V )  ->  ( F `  x )  e.  ( Base `  T
) )
6663, 65, 13syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V )  ->  ( M `  ( F `  x ) )  e.  RR )
6766adantr 451 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =/=  .0.  )  ->  ( M `
 ( F `  x ) )  e.  RR )
68 simpllr 735 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =/=  .0.  )  ->  A  e.  RR )
6915adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  e.  RR )  ->  S  e. NrmGrp
)
70193expa 1151 . . . . . . . . . . . 12  |-  ( ( ( S  e. NrmGrp  /\  x  e.  V )  /\  x  =/=  .0.  )  ->  ( L `  x )  e.  RR+ )
7169, 70sylanl1 631 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =/=  .0.  )  ->  ( L `
 x )  e.  RR+ )
7267, 68, 71ledivmul2d 10440 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =/=  .0.  )  ->  ( ( ( M `  ( F `  x )
)  /  ( L `
 x ) )  <_  A  <->  ( M `  ( F `  x
) )  <_  ( A  x.  ( L `  x ) ) ) )
7372biimpd 198 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =/=  .0.  )  ->  ( ( ( M `  ( F `  x )
)  /  ( L `
 x ) )  <_  A  ->  ( M `  ( F `  x ) )  <_ 
( A  x.  ( L `  x )
) ) )
7462, 73embantd 50 . . . . . . . 8  |-  ( ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V
)  /\  x  =/=  .0.  )  ->  ( ( x  =/=  .0.  ->  ( ( M `  ( F `  x )
)  /  ( L `
 x ) )  <_  A )  -> 
( M `  ( F `  x )
)  <_  ( A  x.  ( L `  x
) ) ) )
7561, 74pm2.61dane 2524 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  RR )  /\  x  e.  V )  ->  (
( x  =/=  .0.  ->  ( ( M `  ( F `  x ) )  /  ( L `
 x ) )  <_  A )  -> 
( M `  ( F `  x )
)  <_  ( A  x.  ( L `  x
) ) ) )
7675ralimdva 2621 . . . . . 6  |-  ( (
ph  /\  A  e.  RR )  ->  ( A. x  e.  V  (
x  =/=  .0.  ->  ( ( M `  ( F `  x )
)  /  ( L `
 x ) )  <_  A )  ->  A. x  e.  V  ( M `  ( F `
 x ) )  <_  ( A  x.  ( L `  x ) ) ) )
771adantr 451 . . . . . . 7  |-  ( (
ph  /\  A  e.  RR )  ->  T  e. NrmGrp
)
783adantr 451 . . . . . . 7  |-  ( (
ph  /\  A  e.  RR )  ->  F  e.  ( S  GrpHom  T ) )
79 simpr 447 . . . . . . 7  |-  ( (
ph  /\  A  e.  RR )  ->  A  e.  RR )
80 nmoleub.5 . . . . . . . 8  |-  ( ph  ->  0  <_  A )
8180adantr 451 . . . . . . 7  |-  ( (
ph  /\  A  e.  RR )  ->  0  <_  A )
8224, 4, 17, 12nmolb 18226 . . . . . . 7  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  /\  A  e.  RR  /\  0  <_  A )  ->  ( A. x  e.  V  ( M `  ( F `  x ) )  <_  ( A  x.  ( L `  x
) )  ->  ( N `  F )  <_  A ) )
8369, 77, 78, 79, 81, 82syl311anc 1196 . . . . . 6  |-  ( (
ph  /\  A  e.  RR )  ->  ( A. x  e.  V  ( M `  ( F `  x ) )  <_ 
( A  x.  ( L `  x )
)  ->  ( N `  F )  <_  A
) )
8476, 83syld 40 . . . . 5  |-  ( (
ph  /\  A  e.  RR )  ->  ( A. x  e.  V  (
x  =/=  .0.  ->  ( ( M `  ( F `  x )
)  /  ( L `
 x ) )  <_  A )  -> 
( N `  F
)  <_  A )
)
8584imp 418 . . . 4  |-  ( ( ( ph  /\  A  e.  RR )  /\  A. x  e.  V  (
x  =/=  .0.  ->  ( ( M `  ( F `  x )
)  /  ( L `
 x ) )  <_  A ) )  ->  ( N `  F )  <_  A
)
8685an32s 779 . . 3  |-  ( ( ( ph  /\  A. x  e.  V  (
x  =/=  .0.  ->  ( ( M `  ( F `  x )
)  /  ( L `
 x ) )  <_  A ) )  /\  A  e.  RR )  ->  ( N `  F )  <_  A
)
8726ad2antrr 706 . . . . 5  |-  ( ( ( ph  /\  A. x  e.  V  (
x  =/=  .0.  ->  ( ( M `  ( F `  x )
)  /  ( L `
 x ) )  <_  A ) )  /\  A  =  +oo )  ->  ( N `  F )  e.  RR* )
88 pnfge 10469 . . . . 5  |-  ( ( N `  F )  e.  RR*  ->  ( N `
 F )  <_  +oo )
8987, 88syl 15 . . . 4  |-  ( ( ( ph  /\  A. x  e.  V  (
x  =/=  .0.  ->  ( ( M `  ( F `  x )
)  /  ( L `
 x ) )  <_  A ) )  /\  A  =  +oo )  ->  ( N `  F )  <_  +oo )
90 simpr 447 . . . 4  |-  ( ( ( ph  /\  A. x  e.  V  (
x  =/=  .0.  ->  ( ( M `  ( F `  x )
)  /  ( L `
 x ) )  <_  A ) )  /\  A  =  +oo )  ->  A  =  +oo )
9189, 90breqtrrd 4049 . . 3  |-  ( ( ( ph  /\  A. x  e.  V  (
x  =/=  .0.  ->  ( ( M `  ( F `  x )
)  /  ( L `
 x ) )  <_  A ) )  /\  A  =  +oo )  ->  ( N `  F )  <_  A
)
92 ge0nemnf 10502 . . . . . . 7  |-  ( ( A  e.  RR*  /\  0  <_  A )  ->  A  =/=  -oo )
9328, 80, 92syl2anc 642 . . . . . 6  |-  ( ph  ->  A  =/=  -oo )
9428, 93jca 518 . . . . 5  |-  ( ph  ->  ( A  e.  RR*  /\  A  =/=  -oo )
)
95 xrnemnf 10460 . . . . 5  |-  ( ( A  e.  RR*  /\  A  =/=  -oo )  <->  ( A  e.  RR  \/  A  = 
+oo ) )
9694, 95sylib 188 . . . 4  |-  ( ph  ->  ( A  e.  RR  \/  A  =  +oo ) )
9796adantr 451 . . 3  |-  ( (
ph  /\  A. x  e.  V  ( x  =/=  .0.  ->  ( ( M `  ( F `  x ) )  / 
( L `  x
) )  <_  A
) )  ->  ( A  e.  RR  \/  A  =  +oo ) )
9886, 91, 97mpjaodan 761 . 2  |-  ( (
ph  /\  A. x  e.  V  ( x  =/=  .0.  ->  ( ( M `  ( F `  x ) )  / 
( L `  x
) )  <_  A
) )  ->  ( N `  F )  <_  A )
9937, 98impbida 805 1  |-  ( ph  ->  ( ( N `  F )  <_  A  <->  A. x  e.  V  ( x  =/=  .0.  ->  ( ( M `  ( F `  x )
)  /  ( L `
 x ) )  <_  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   class class class wbr 4023   -->wf 5251   ` cfv 5255  (class class class)co 5858   RRcr 8736   0cc0 8737    x. cmul 8742    +oocpnf 8864    -oocmnf 8865   RR*cxr 8866    <_ cle 8868    / cdiv 9423   RR+crp 10354   Basecbs 13148   0gc0g 13400    GrpHom cghm 14680   normcnm 18099  NrmGrpcngp 18100   normOpcnmo 18214
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ico 10662  df-topgen 13344  df-0g 13404  df-mnd 14367  df-grp 14489  df-ghm 14681  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-xms 17885  df-ms 17886  df-nm 18105  df-ngp 18106  df-nmo 18217  df-nghm 18218
  Copyright terms: Public domain W3C validator