MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoo0 Unicode version

Theorem nmoo0 22253
Description: The operator norm of the zero operator. (Contributed by NM, 27-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoo0.3  |-  N  =  ( U normOp OLD W
)
nmoo0.0  |-  Z  =  ( U  0op  W
)
Assertion
Ref Expression
nmoo0  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( N `  Z )  =  0 )

Proof of Theorem nmoo0
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2412 . . . . 5  |-  ( BaseSet `  U )  =  (
BaseSet `  U )
2 eqid 2412 . . . . 5  |-  ( BaseSet `  W )  =  (
BaseSet `  W )
3 nmoo0.0 . . . . 5  |-  Z  =  ( U  0op  W
)
41, 2, 30oo 22251 . . . 4  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  Z : ( BaseSet `  U
) --> ( BaseSet `  W
) )
5 eqid 2412 . . . . 5  |-  ( normCV `  U )  =  (
normCV
`  U )
6 eqid 2412 . . . . 5  |-  ( normCV `  W )  =  (
normCV
`  W )
7 nmoo0.3 . . . . 5  |-  N  =  ( U normOp OLD W
)
81, 2, 5, 6, 7nmooval 22225 . . . 4  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  Z :
( BaseSet `  U ) --> ( BaseSet `  W )
)  ->  ( N `  Z )  =  sup ( { x  |  E. z  e.  ( BaseSet `  U ) ( ( ( normCV `  U ) `  z )  <_  1  /\  x  =  (
( normCV `  W ) `  ( Z `  z ) ) ) } ,  RR* ,  <  ) )
94, 8mpd3an3 1280 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( N `  Z )  =  sup ( { x  |  E. z  e.  (
BaseSet `  U ) ( ( ( normCV `  U
) `  z )  <_  1  /\  x  =  ( ( normCV `  W
) `  ( Z `  z ) ) ) } ,  RR* ,  <  ) )
10 df-sn 3788 . . . . 5  |-  { 0 }  =  { x  |  x  =  0 }
11 eqid 2412 . . . . . . . . . . 11  |-  ( 0vec `  U )  =  (
0vec `  U )
121, 11nvzcl 22076 . . . . . . . . . 10  |-  ( U  e.  NrmCVec  ->  ( 0vec `  U
)  e.  ( BaseSet `  U ) )
1311, 5nvz0 22118 . . . . . . . . . . 11  |-  ( U  e.  NrmCVec  ->  ( ( normCV `  U ) `  ( 0vec `  U ) )  =  0 )
14 0le1 9515 . . . . . . . . . . 11  |-  0  <_  1
1513, 14syl6eqbr 4217 . . . . . . . . . 10  |-  ( U  e.  NrmCVec  ->  ( ( normCV `  U ) `  ( 0vec `  U ) )  <_  1 )
16 fveq2 5695 . . . . . . . . . . . 12  |-  ( z  =  ( 0vec `  U
)  ->  ( ( normCV `  U ) `  z
)  =  ( (
normCV
`  U ) `  ( 0vec `  U )
) )
1716breq1d 4190 . . . . . . . . . . 11  |-  ( z  =  ( 0vec `  U
)  ->  ( (
( normCV `  U ) `  z )  <_  1  <->  ( ( normCV `  U ) `  ( 0vec `  U )
)  <_  1 ) )
1817rspcev 3020 . . . . . . . . . 10  |-  ( ( ( 0vec `  U
)  e.  ( BaseSet `  U )  /\  (
( normCV `  U ) `  ( 0vec `  U )
)  <_  1 )  ->  E. z  e.  (
BaseSet `  U ) ( ( normCV `  U ) `  z )  <_  1
)
1912, 15, 18syl2anc 643 . . . . . . . . 9  |-  ( U  e.  NrmCVec  ->  E. z  e.  (
BaseSet `  U ) ( ( normCV `  U ) `  z )  <_  1
)
2019biantrurd 495 . . . . . . . 8  |-  ( U  e.  NrmCVec  ->  ( x  =  0  <->  ( E. z  e.  ( BaseSet `  U )
( ( normCV `  U
) `  z )  <_  1  /\  x  =  0 ) ) )
2120adantr 452 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  (
x  =  0  <->  ( E. z  e.  ( BaseSet
`  U ) ( ( normCV `  U ) `  z )  <_  1  /\  x  =  0
) ) )
22 eqid 2412 . . . . . . . . . . . . . . 15  |-  ( 0vec `  W )  =  (
0vec `  W )
231, 22, 30oval 22250 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  z  e.  ( BaseSet `  U )
)  ->  ( Z `  z )  =  (
0vec `  W )
)
24233expa 1153 . . . . . . . . . . . . 13  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  /\  z  e.  ( BaseSet `  U ) )  -> 
( Z `  z
)  =  ( 0vec `  W ) )
2524fveq2d 5699 . . . . . . . . . . . 12  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  /\  z  e.  ( BaseSet `  U ) )  -> 
( ( normCV `  W
) `  ( Z `  z ) )  =  ( ( normCV `  W
) `  ( 0vec `  W ) ) )
2622, 6nvz0 22118 . . . . . . . . . . . . 13  |-  ( W  e.  NrmCVec  ->  ( ( normCV `  W ) `  ( 0vec `  W ) )  =  0 )
2726ad2antlr 708 . . . . . . . . . . . 12  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  /\  z  e.  ( BaseSet `  U ) )  -> 
( ( normCV `  W
) `  ( 0vec `  W ) )  =  0 )
2825, 27eqtrd 2444 . . . . . . . . . . 11  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  /\  z  e.  ( BaseSet `  U ) )  -> 
( ( normCV `  W
) `  ( Z `  z ) )  =  0 )
2928eqeq2d 2423 . . . . . . . . . 10  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  /\  z  e.  ( BaseSet `  U ) )  -> 
( x  =  ( ( normCV `  W ) `  ( Z `  z ) )  <->  x  =  0
) )
3029anbi2d 685 . . . . . . . . 9  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  /\  z  e.  ( BaseSet `  U ) )  -> 
( ( ( (
normCV
`  U ) `  z )  <_  1  /\  x  =  (
( normCV `  W ) `  ( Z `  z ) ) )  <->  ( (
( normCV `  U ) `  z )  <_  1  /\  x  =  0
) ) )
3130rexbidva 2691 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( E. z  e.  ( BaseSet
`  U ) ( ( ( normCV `  U
) `  z )  <_  1  /\  x  =  ( ( normCV `  W
) `  ( Z `  z ) ) )  <->  E. z  e.  ( BaseSet
`  U ) ( ( ( normCV `  U
) `  z )  <_  1  /\  x  =  0 ) ) )
32 r19.41v 2829 . . . . . . . 8  |-  ( E. z  e.  ( BaseSet `  U ) ( ( ( normCV `  U ) `  z )  <_  1  /\  x  =  0
)  <->  ( E. z  e.  ( BaseSet `  U )
( ( normCV `  U
) `  z )  <_  1  /\  x  =  0 ) )
3331, 32syl6rbb 254 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  (
( E. z  e.  ( BaseSet `  U )
( ( normCV `  U
) `  z )  <_  1  /\  x  =  0 )  <->  E. z  e.  ( BaseSet `  U )
( ( ( normCV `  U ) `  z
)  <_  1  /\  x  =  ( ( normCV `  W ) `  ( Z `  z )
) ) ) )
3421, 33bitrd 245 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  (
x  =  0  <->  E. z  e.  ( BaseSet `  U ) ( ( ( normCV `  U ) `  z )  <_  1  /\  x  =  (
( normCV `  W ) `  ( Z `  z ) ) ) ) )
3534abbidv 2526 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  { x  |  x  =  0 }  =  { x  |  E. z  e.  (
BaseSet `  U ) ( ( ( normCV `  U
) `  z )  <_  1  /\  x  =  ( ( normCV `  W
) `  ( Z `  z ) ) ) } )
3610, 35syl5req 2457 . . . 4  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  { x  |  E. z  e.  (
BaseSet `  U ) ( ( ( normCV `  U
) `  z )  <_  1  /\  x  =  ( ( normCV `  W
) `  ( Z `  z ) ) ) }  =  { 0 } )
3736supeq1d 7417 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  sup ( { x  |  E. z  e.  ( BaseSet `  U ) ( ( ( normCV `  U ) `  z )  <_  1  /\  x  =  (
( normCV `  W ) `  ( Z `  z ) ) ) } ,  RR* ,  <  )  =  sup ( { 0 } ,  RR* ,  <  ) )
389, 37eqtrd 2444 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( N `  Z )  =  sup ( { 0 } ,  RR* ,  <  ) )
39 xrltso 10698 . . 3  |-  <  Or  RR*
40 0xr 9095 . . 3  |-  0  e.  RR*
41 supsn 7438 . . 3  |-  ( (  <  Or  RR*  /\  0  e.  RR* )  ->  sup ( { 0 } ,  RR* ,  <  )  =  0 )
4239, 40, 41mp2an 654 . 2  |-  sup ( { 0 } ,  RR* ,  <  )  =  0
4338, 42syl6eq 2460 1  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( N `  Z )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   {cab 2398   E.wrex 2675   {csn 3782   class class class wbr 4180    Or wor 4470   -->wf 5417   ` cfv 5421  (class class class)co 6048   supcsup 7411   0cc0 8954   1c1 8955   RR*cxr 9083    < clt 9084    <_ cle 9085   NrmCVeccnv 22024   BaseSetcba 22026   0veccn0v 22028   normCVcnmcv 22030   normOp OLDcnmoo 22203    0op c0o 22205
This theorem is referenced by:  0blo  22254  nmlno0lem  22255
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031  ax-pre-sup 9032
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-riota 6516  df-recs 6600  df-rdg 6635  df-er 6872  df-map 6987  df-en 7077  df-dom 7078  df-sdom 7079  df-sup 7412  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-div 9642  df-nn 9965  df-2 10022  df-3 10023  df-n0 10186  df-z 10247  df-uz 10453  df-rp 10577  df-seq 11287  df-exp 11346  df-cj 11867  df-re 11868  df-im 11869  df-sqr 12003  df-abs 12004  df-grpo 21740  df-gid 21741  df-ginv 21742  df-ablo 21831  df-vc 21986  df-nv 22032  df-va 22035  df-ba 22036  df-sm 22037  df-0v 22038  df-nmcv 22040  df-nmoo 22207  df-0o 22209
  Copyright terms: Public domain W3C validator