MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoofval Unicode version

Theorem nmoofval 22113
Description: The operator norm function. (Contributed by NM, 6-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoofval.1  |-  X  =  ( BaseSet `  U )
nmoofval.2  |-  Y  =  ( BaseSet `  W )
nmoofval.3  |-  L  =  ( normCV `  U )
nmoofval.4  |-  M  =  ( normCV `  W )
nmoofval.6  |-  N  =  ( U normOp OLD W
)
Assertion
Ref Expression
nmoofval  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  N  =  ( t  e.  ( Y  ^m  X
)  |->  sup ( { x  |  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  ( M `  ( t `  z ) ) ) } ,  RR* ,  <  ) ) )
Distinct variable groups:    x, t,
z, U    t, W, x, z    t, X, z   
t, Y, x    t, L    t, M
Allowed substitution hints:    L( x, z)    M( x, z)    N( x, z, t)    X( x)    Y( z)

Proof of Theorem nmoofval
Dummy variables  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmoofval.6 . 2  |-  N  =  ( U normOp OLD W
)
2 fveq2 5670 . . . . . 6  |-  ( u  =  U  ->  ( BaseSet
`  u )  =  ( BaseSet `  U )
)
3 nmoofval.1 . . . . . 6  |-  X  =  ( BaseSet `  U )
42, 3syl6eqr 2439 . . . . 5  |-  ( u  =  U  ->  ( BaseSet
`  u )  =  X )
54oveq2d 6038 . . . 4  |-  ( u  =  U  ->  (
( BaseSet `  w )  ^m  ( BaseSet `  u )
)  =  ( (
BaseSet `  w )  ^m  X ) )
6 fveq2 5670 . . . . . . . . . . 11  |-  ( u  =  U  ->  ( normCV `  u )  =  (
normCV
`  U ) )
7 nmoofval.3 . . . . . . . . . . 11  |-  L  =  ( normCV `  U )
86, 7syl6eqr 2439 . . . . . . . . . 10  |-  ( u  =  U  ->  ( normCV `  u )  =  L )
98fveq1d 5672 . . . . . . . . 9  |-  ( u  =  U  ->  (
( normCV `  u ) `  z )  =  ( L `  z ) )
109breq1d 4165 . . . . . . . 8  |-  ( u  =  U  ->  (
( ( normCV `  u
) `  z )  <_  1  <->  ( L `  z )  <_  1
) )
1110anbi1d 686 . . . . . . 7  |-  ( u  =  U  ->  (
( ( ( normCV `  u ) `  z
)  <_  1  /\  x  =  ( ( normCV `  w ) `  (
t `  z )
) )  <->  ( ( L `  z )  <_  1  /\  x  =  ( ( normCV `  w
) `  ( t `  z ) ) ) ) )
124, 11rexeqbidv 2862 . . . . . 6  |-  ( u  =  U  ->  ( E. z  e.  ( BaseSet
`  u ) ( ( ( normCV `  u
) `  z )  <_  1  /\  x  =  ( ( normCV `  w
) `  ( t `  z ) ) )  <->  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  (
( normCV `  w ) `  ( t `  z
) ) ) ) )
1312abbidv 2503 . . . . 5  |-  ( u  =  U  ->  { x  |  E. z  e.  (
BaseSet `  u ) ( ( ( normCV `  u
) `  z )  <_  1  /\  x  =  ( ( normCV `  w
) `  ( t `  z ) ) ) }  =  { x  |  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  (
( normCV `  w ) `  ( t `  z
) ) ) } )
1413supeq1d 7388 . . . 4  |-  ( u  =  U  ->  sup ( { x  |  E. z  e.  ( BaseSet `  u ) ( ( ( normCV `  u ) `  z )  <_  1  /\  x  =  (
( normCV `  w ) `  ( t `  z
) ) ) } ,  RR* ,  <  )  =  sup ( { x  |  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  (
( normCV `  w ) `  ( t `  z
) ) ) } ,  RR* ,  <  )
)
155, 14mpteq12dv 4230 . . 3  |-  ( u  =  U  ->  (
t  e.  ( (
BaseSet `  w )  ^m  ( BaseSet `  u )
)  |->  sup ( { x  |  E. z  e.  (
BaseSet `  u ) ( ( ( normCV `  u
) `  z )  <_  1  /\  x  =  ( ( normCV `  w
) `  ( t `  z ) ) ) } ,  RR* ,  <  ) )  =  ( t  e.  ( ( BaseSet `  w )  ^m  X
)  |->  sup ( { x  |  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  (
( normCV `  w ) `  ( t `  z
) ) ) } ,  RR* ,  <  )
) )
16 fveq2 5670 . . . . . 6  |-  ( w  =  W  ->  ( BaseSet
`  w )  =  ( BaseSet `  W )
)
17 nmoofval.2 . . . . . 6  |-  Y  =  ( BaseSet `  W )
1816, 17syl6eqr 2439 . . . . 5  |-  ( w  =  W  ->  ( BaseSet
`  w )  =  Y )
1918oveq1d 6037 . . . 4  |-  ( w  =  W  ->  (
( BaseSet `  w )  ^m  X )  =  ( Y  ^m  X ) )
20 fveq2 5670 . . . . . . . . . . 11  |-  ( w  =  W  ->  ( normCV `  w )  =  (
normCV
`  W ) )
21 nmoofval.4 . . . . . . . . . . 11  |-  M  =  ( normCV `  W )
2220, 21syl6eqr 2439 . . . . . . . . . 10  |-  ( w  =  W  ->  ( normCV `  w )  =  M )
2322fveq1d 5672 . . . . . . . . 9  |-  ( w  =  W  ->  (
( normCV `  w ) `  ( t `  z
) )  =  ( M `  ( t `
 z ) ) )
2423eqeq2d 2400 . . . . . . . 8  |-  ( w  =  W  ->  (
x  =  ( (
normCV
`  w ) `  ( t `  z
) )  <->  x  =  ( M `  ( t `
 z ) ) ) )
2524anbi2d 685 . . . . . . 7  |-  ( w  =  W  ->  (
( ( L `  z )  <_  1  /\  x  =  (
( normCV `  w ) `  ( t `  z
) ) )  <->  ( ( L `  z )  <_  1  /\  x  =  ( M `  (
t `  z )
) ) ) )
2625rexbidv 2672 . . . . . 6  |-  ( w  =  W  ->  ( E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  (
( normCV `  w ) `  ( t `  z
) ) )  <->  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  ( M `  (
t `  z )
) ) ) )
2726abbidv 2503 . . . . 5  |-  ( w  =  W  ->  { x  |  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  (
( normCV `  w ) `  ( t `  z
) ) ) }  =  { x  |  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  ( M `  ( t `  z ) ) ) } )
2827supeq1d 7388 . . . 4  |-  ( w  =  W  ->  sup ( { x  |  E. z  e.  X  (
( L `  z
)  <_  1  /\  x  =  ( ( normCV `  w ) `  (
t `  z )
) ) } ,  RR* ,  <  )  =  sup ( { x  |  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  ( M `  ( t `  z ) ) ) } ,  RR* ,  <  ) )
2919, 28mpteq12dv 4230 . . 3  |-  ( w  =  W  ->  (
t  e.  ( (
BaseSet `  w )  ^m  X )  |->  sup ( { x  |  E. z  e.  X  (
( L `  z
)  <_  1  /\  x  =  ( ( normCV `  w ) `  (
t `  z )
) ) } ,  RR* ,  <  ) )  =  ( t  e.  ( Y  ^m  X
)  |->  sup ( { x  |  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  ( M `  ( t `  z ) ) ) } ,  RR* ,  <  ) ) )
30 df-nmoo 22096 . . 3  |-  normOp OLD  =  ( u  e.  NrmCVec ,  w  e.  NrmCVec  |->  ( t  e.  ( ( BaseSet `  w
)  ^m  ( BaseSet `  u ) )  |->  sup ( { x  |  E. z  e.  (
BaseSet `  u ) ( ( ( normCV `  u
) `  z )  <_  1  /\  x  =  ( ( normCV `  w
) `  ( t `  z ) ) ) } ,  RR* ,  <  ) ) )
31 ovex 6047 . . . 4  |-  ( Y  ^m  X )  e. 
_V
3231mptex 5907 . . 3  |-  ( t  e.  ( Y  ^m  X )  |->  sup ( { x  |  E. z  e.  X  (
( L `  z
)  <_  1  /\  x  =  ( M `  ( t `  z
) ) ) } ,  RR* ,  <  )
)  e.  _V
3315, 29, 30, 32ovmpt2 6150 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( U normOp OLD W )  =  ( t  e.  ( Y  ^m  X ) 
|->  sup ( { x  |  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  ( M `  ( t `  z ) ) ) } ,  RR* ,  <  ) ) )
341, 33syl5eq 2433 1  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  N  =  ( t  e.  ( Y  ^m  X
)  |->  sup ( { x  |  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  ( M `  ( t `  z ) ) ) } ,  RR* ,  <  ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   {cab 2375   E.wrex 2652   class class class wbr 4155    e. cmpt 4209   ` cfv 5396  (class class class)co 6022    ^m cmap 6956   supcsup 7382   1c1 8926   RR*cxr 9054    < clt 9055    <_ cle 9056   NrmCVeccnv 21913   BaseSetcba 21915   normCVcnmcv 21919   normOp OLDcnmoo 22092
This theorem is referenced by:  nmooval  22114  hhnmoi  23254
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pr 4346
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-reu 2658  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-sup 7383  df-nmoo 22096
  Copyright terms: Public domain W3C validator