MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmooge0 Unicode version

Theorem nmooge0 21345
Description: The norm of an operator is nonnegative. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoxr.1  |-  X  =  ( BaseSet `  U )
nmoxr.2  |-  Y  =  ( BaseSet `  W )
nmoxr.3  |-  N  =  ( U normOp OLD W
)
Assertion
Ref Expression
nmooge0  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X
--> Y )  ->  0  <_  ( N `  T
) )

Proof of Theorem nmooge0
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 8878 . . 3  |-  0  e.  RR*
21a1i 10 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X
--> Y )  ->  0  e.  RR* )
3 simp2 956 . . . 4  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X
--> Y )  ->  W  e.  NrmCVec )
4 nmoxr.1 . . . . . . . 8  |-  X  =  ( BaseSet `  U )
5 eqid 2283 . . . . . . . 8  |-  ( 0vec `  U )  =  (
0vec `  U )
64, 5nvzcl 21192 . . . . . . 7  |-  ( U  e.  NrmCVec  ->  ( 0vec `  U
)  e.  X )
7 ffvelrn 5663 . . . . . . 7  |-  ( ( T : X --> Y  /\  ( 0vec `  U )  e.  X )  ->  ( T `  ( 0vec `  U ) )  e.  Y )
86, 7sylan2 460 . . . . . 6  |-  ( ( T : X --> Y  /\  U  e.  NrmCVec )  -> 
( T `  ( 0vec `  U ) )  e.  Y )
98ancoms 439 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  T : X --> Y )  -> 
( T `  ( 0vec `  U ) )  e.  Y )
1093adant2 974 . . . 4  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X
--> Y )  ->  ( T `  ( 0vec `  U ) )  e.  Y )
11 nmoxr.2 . . . . 5  |-  Y  =  ( BaseSet `  W )
12 eqid 2283 . . . . 5  |-  ( normCV `  W )  =  (
normCV
`  W )
1311, 12nvcl 21225 . . . 4  |-  ( ( W  e.  NrmCVec  /\  ( T `  ( 0vec `  U ) )  e.  Y )  ->  (
( normCV `  W ) `  ( T `  ( 0vec `  U ) ) )  e.  RR )
143, 10, 13syl2anc 642 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X
--> Y )  ->  (
( normCV `  W ) `  ( T `  ( 0vec `  U ) ) )  e.  RR )
1514rexrd 8881 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X
--> Y )  ->  (
( normCV `  W ) `  ( T `  ( 0vec `  U ) ) )  e.  RR* )
16 nmoxr.3 . . 3  |-  N  =  ( U normOp OLD W
)
174, 11, 16nmoxr 21344 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X
--> Y )  ->  ( N `  T )  e.  RR* )
1811, 12nvge0 21240 . . 3  |-  ( ( W  e.  NrmCVec  /\  ( T `  ( 0vec `  U ) )  e.  Y )  ->  0  <_  ( ( normCV `  W
) `  ( T `  ( 0vec `  U
) ) ) )
193, 10, 18syl2anc 642 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X
--> Y )  ->  0  <_  ( ( normCV `  W
) `  ( T `  ( 0vec `  U
) ) ) )
2011, 12nmosetre 21342 . . . . . . 7  |-  ( ( W  e.  NrmCVec  /\  T : X --> Y )  ->  { x  |  E. z  e.  X  (
( ( normCV `  U
) `  z )  <_  1  /\  x  =  ( ( normCV `  W
) `  ( T `  z ) ) ) }  C_  RR )
21 ressxr 8876 . . . . . . 7  |-  RR  C_  RR*
2220, 21syl6ss 3191 . . . . . 6  |-  ( ( W  e.  NrmCVec  /\  T : X --> Y )  ->  { x  |  E. z  e.  X  (
( ( normCV `  U
) `  z )  <_  1  /\  x  =  ( ( normCV `  W
) `  ( T `  z ) ) ) }  C_  RR* )
23 eqid 2283 . . . . . . 7  |-  ( normCV `  U )  =  (
normCV
`  U )
244, 5, 23nmosetn0 21343 . . . . . 6  |-  ( U  e.  NrmCVec  ->  ( ( normCV `  W ) `  ( T `  ( 0vec `  U ) ) )  e.  { x  |  E. z  e.  X  ( ( ( normCV `  U ) `  z
)  <_  1  /\  x  =  ( ( normCV `  W ) `  ( T `  z )
) ) } )
25 supxrub 10643 . . . . . 6  |-  ( ( { x  |  E. z  e.  X  (
( ( normCV `  U
) `  z )  <_  1  /\  x  =  ( ( normCV `  W
) `  ( T `  z ) ) ) }  C_  RR*  /\  (
( normCV `  W ) `  ( T `  ( 0vec `  U ) ) )  e.  { x  |  E. z  e.  X  ( ( ( normCV `  U ) `  z
)  <_  1  /\  x  =  ( ( normCV `  W ) `  ( T `  z )
) ) } )  ->  ( ( normCV `  W ) `  ( T `  ( 0vec `  U ) ) )  <_  sup ( { x  |  E. z  e.  X  ( ( ( normCV `  U ) `  z
)  <_  1  /\  x  =  ( ( normCV `  W ) `  ( T `  z )
) ) } ,  RR* ,  <  ) )
2622, 24, 25syl2an 463 . . . . 5  |-  ( ( ( W  e.  NrmCVec  /\  T : X --> Y )  /\  U  e.  NrmCVec )  ->  ( ( normCV `  W ) `  ( T `  ( 0vec `  U ) ) )  <_  sup ( { x  |  E. z  e.  X  ( ( ( normCV `  U ) `  z
)  <_  1  /\  x  =  ( ( normCV `  W ) `  ( T `  z )
) ) } ,  RR* ,  <  ) )
27263impa 1146 . . . 4  |-  ( ( W  e.  NrmCVec  /\  T : X --> Y  /\  U  e.  NrmCVec )  ->  (
( normCV `  W ) `  ( T `  ( 0vec `  U ) ) )  <_  sup ( { x  |  E. z  e.  X  ( ( ( normCV `  U ) `  z
)  <_  1  /\  x  =  ( ( normCV `  W ) `  ( T `  z )
) ) } ,  RR* ,  <  ) )
28273comr 1159 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X
--> Y )  ->  (
( normCV `  W ) `  ( T `  ( 0vec `  U ) ) )  <_  sup ( { x  |  E. z  e.  X  ( ( ( normCV `  U ) `  z
)  <_  1  /\  x  =  ( ( normCV `  W ) `  ( T `  z )
) ) } ,  RR* ,  <  ) )
294, 11, 23, 12, 16nmooval 21341 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X
--> Y )  ->  ( N `  T )  =  sup ( { x  |  E. z  e.  X  ( ( ( normCV `  U ) `  z
)  <_  1  /\  x  =  ( ( normCV `  W ) `  ( T `  z )
) ) } ,  RR* ,  <  ) )
3028, 29breqtrrd 4049 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X
--> Y )  ->  (
( normCV `  W ) `  ( T `  ( 0vec `  U ) ) )  <_  ( N `  T ) )
312, 15, 17, 19, 30xrletrd 10493 1  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X
--> Y )  ->  0  <_  ( N `  T
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   {cab 2269   E.wrex 2544    C_ wss 3152   class class class wbr 4023   -->wf 5251   ` cfv 5255  (class class class)co 5858   supcsup 7193   RRcr 8736   0cc0 8737   1c1 8738   RR*cxr 8866    < clt 8867    <_ cle 8868   NrmCVeccnv 21140   BaseSetcba 21142   0veccn0v 21144   normCVcnmcv 21146   normOp OLDcnmoo 21319
This theorem is referenced by:  nmlnogt0  21375  htthlem  21497
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-grpo 20858  df-gid 20859  df-ginv 20860  df-ablo 20949  df-vc 21102  df-nv 21148  df-va 21151  df-ba 21152  df-sm 21153  df-0v 21154  df-nmcv 21156  df-nmoo 21323
  Copyright terms: Public domain W3C validator