HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopcoi Structured version   Unicode version

Theorem nmopcoi 23590
Description: Upper bound for the norm of the composition of two bounded linear operators. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoptri.1  |-  S  e.  BndLinOp
nmoptri.2  |-  T  e.  BndLinOp
Assertion
Ref Expression
nmopcoi  |-  ( normop `  ( S  o.  T
) )  <_  (
( normop `  S )  x.  ( normop `  T )
)

Proof of Theorem nmopcoi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 nmoptri.1 . . . . . 6  |-  S  e.  BndLinOp
2 bdopln 23356 . . . . . 6  |-  ( S  e.  BndLinOp  ->  S  e.  LinOp )
31, 2ax-mp 8 . . . . 5  |-  S  e. 
LinOp
4 nmoptri.2 . . . . . 6  |-  T  e.  BndLinOp
5 bdopln 23356 . . . . . 6  |-  ( T  e.  BndLinOp  ->  T  e.  LinOp )
64, 5ax-mp 8 . . . . 5  |-  T  e. 
LinOp
73, 6lnopcoi 23498 . . . 4  |-  ( S  o.  T )  e. 
LinOp
87lnopfi 23464 . . 3  |-  ( S  o.  T ) : ~H --> ~H
9 nmopre 23365 . . . . . 6  |-  ( S  e.  BndLinOp  ->  ( normop `  S
)  e.  RR )
101, 9ax-mp 8 . . . . 5  |-  ( normop `  S )  e.  RR
11 nmopre 23365 . . . . . 6  |-  ( T  e.  BndLinOp  ->  ( normop `  T
)  e.  RR )
124, 11ax-mp 8 . . . . 5  |-  ( normop `  T )  e.  RR
1310, 12remulcli 9096 . . . 4  |-  ( (
normop `  S )  x.  ( normop `  T )
)  e.  RR
1413rexri 9129 . . 3  |-  ( (
normop `  S )  x.  ( normop `  T )
)  e.  RR*
15 nmopub 23403 . . 3  |-  ( ( ( S  o.  T
) : ~H --> ~H  /\  ( ( normop `  S
)  x.  ( normop `  T ) )  e. 
RR* )  ->  (
( normop `  ( S  o.  T ) )  <_ 
( ( normop `  S
)  x.  ( normop `  T ) )  <->  A. x  e.  ~H  ( ( normh `  x )  <_  1  ->  ( normh `  ( ( S  o.  T ) `  x ) )  <_ 
( ( normop `  S
)  x.  ( normop `  T ) ) ) ) )
168, 14, 15mp2an 654 . 2  |-  ( (
normop `  ( S  o.  T ) )  <_ 
( ( normop `  S
)  x.  ( normop `  T ) )  <->  A. x  e.  ~H  ( ( normh `  x )  <_  1  ->  ( normh `  ( ( S  o.  T ) `  x ) )  <_ 
( ( normop `  S
)  x.  ( normop `  T ) ) ) )
17 0le0 10073 . . . . . . 7  |-  0  <_  0
1817a1i 11 . . . . . 6  |-  ( ( ( normop `  T )  =  0  /\  x  e.  ~H )  ->  0  <_  0 )
193, 6lnopco0i 23499 . . . . . . . 8  |-  ( (
normop `  T )  =  0  ->  ( normop `  ( S  o.  T )
)  =  0 )
207nmlnop0iHIL 23491 . . . . . . . 8  |-  ( (
normop `  ( S  o.  T ) )  =  0  <->  ( S  o.  T )  =  0hop )
2119, 20sylib 189 . . . . . . 7  |-  ( (
normop `  T )  =  0  ->  ( S  o.  T )  =  0hop )
22 fveq1 5719 . . . . . . . . 9  |-  ( ( S  o.  T )  =  0hop  ->  ( ( S  o.  T ) `
 x )  =  ( 0hop `  x
) )
2322fveq2d 5724 . . . . . . . 8  |-  ( ( S  o.  T )  =  0hop  ->  ( normh `  ( ( S  o.  T ) `  x
) )  =  (
normh `  ( 0hop `  x
) ) )
24 ho0val 23245 . . . . . . . . . 10  |-  ( x  e.  ~H  ->  ( 0hop `  x )  =  0h )
2524fveq2d 5724 . . . . . . . . 9  |-  ( x  e.  ~H  ->  ( normh `  ( 0hop `  x
) )  =  (
normh `  0h ) )
26 norm0 22622 . . . . . . . . 9  |-  ( normh `  0h )  =  0
2725, 26syl6eq 2483 . . . . . . . 8  |-  ( x  e.  ~H  ->  ( normh `  ( 0hop `  x
) )  =  0 )
2823, 27sylan9eq 2487 . . . . . . 7  |-  ( ( ( S  o.  T
)  =  0hop  /\  x  e.  ~H )  ->  ( normh `  ( ( S  o.  T ) `  x ) )  =  0 )
2921, 28sylan 458 . . . . . 6  |-  ( ( ( normop `  T )  =  0  /\  x  e.  ~H )  ->  ( normh `  ( ( S  o.  T ) `  x ) )  =  0 )
30 oveq2 6081 . . . . . . . 8  |-  ( (
normop `  T )  =  0  ->  ( ( normop `  S )  x.  ( normop `  T ) )  =  ( ( normop `  S
)  x.  0 ) )
3110recni 9094 . . . . . . . . 9  |-  ( normop `  S )  e.  CC
3231mul01i 9248 . . . . . . . 8  |-  ( (
normop `  S )  x.  0 )  =  0
3330, 32syl6eq 2483 . . . . . . 7  |-  ( (
normop `  T )  =  0  ->  ( ( normop `  S )  x.  ( normop `  T ) )  =  0 )
3433adantr 452 . . . . . 6  |-  ( ( ( normop `  T )  =  0  /\  x  e.  ~H )  ->  (
( normop `  S )  x.  ( normop `  T )
)  =  0 )
3518, 29, 343brtr4d 4234 . . . . 5  |-  ( ( ( normop `  T )  =  0  /\  x  e.  ~H )  ->  ( normh `  ( ( S  o.  T ) `  x ) )  <_ 
( ( normop `  S
)  x.  ( normop `  T ) ) )
3635adantrr 698 . . . 4  |-  ( ( ( normop `  T )  =  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( normh `  ( ( S  o.  T ) `  x ) )  <_ 
( ( normop `  S
)  x.  ( normop `  T ) ) )
37 df-ne 2600 . . . . 5  |-  ( (
normop `  T )  =/=  0  <->  -.  ( normop `  T
)  =  0 )
388ffvelrni 5861 . . . . . . . . . . . . . . 15  |-  ( x  e.  ~H  ->  (
( S  o.  T
) `  x )  e.  ~H )
39 normcl 22619 . . . . . . . . . . . . . . 15  |-  ( ( ( S  o.  T
) `  x )  e.  ~H  ->  ( normh `  ( ( S  o.  T ) `  x
) )  e.  RR )
4038, 39syl 16 . . . . . . . . . . . . . 14  |-  ( x  e.  ~H  ->  ( normh `  ( ( S  o.  T ) `  x ) )  e.  RR )
4140recnd 9106 . . . . . . . . . . . . 13  |-  ( x  e.  ~H  ->  ( normh `  ( ( S  o.  T ) `  x ) )  e.  CC )
4212recni 9094 . . . . . . . . . . . . . 14  |-  ( normop `  T )  e.  CC
43 divrec2 9687 . . . . . . . . . . . . . 14  |-  ( ( ( normh `  ( ( S  o.  T ) `  x ) )  e.  CC  /\  ( normop `  T )  e.  CC  /\  ( normop `  T )  =/=  0 )  ->  (
( normh `  ( ( S  o.  T ) `  x ) )  / 
( normop `  T )
)  =  ( ( 1  /  ( normop `  T ) )  x.  ( normh `  ( ( S  o.  T ) `  x ) ) ) )
4442, 43mp3an2 1267 . . . . . . . . . . . . 13  |-  ( ( ( normh `  ( ( S  o.  T ) `  x ) )  e.  CC  /\  ( normop `  T )  =/=  0
)  ->  ( ( normh `  ( ( S  o.  T ) `  x ) )  / 
( normop `  T )
)  =  ( ( 1  /  ( normop `  T ) )  x.  ( normh `  ( ( S  o.  T ) `  x ) ) ) )
4541, 44sylan 458 . . . . . . . . . . . 12  |-  ( ( x  e.  ~H  /\  ( normop `  T )  =/=  0 )  ->  (
( normh `  ( ( S  o.  T ) `  x ) )  / 
( normop `  T )
)  =  ( ( 1  /  ( normop `  T ) )  x.  ( normh `  ( ( S  o.  T ) `  x ) ) ) )
4645ancoms 440 . . . . . . . . . . 11  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  (
( normh `  ( ( S  o.  T ) `  x ) )  / 
( normop `  T )
)  =  ( ( 1  /  ( normop `  T ) )  x.  ( normh `  ( ( S  o.  T ) `  x ) ) ) )
4712rerecclzi 9770 . . . . . . . . . . . . . 14  |-  ( (
normop `  T )  =/=  0  ->  ( 1  /  ( normop `  T
) )  e.  RR )
48 bdopf 23357 . . . . . . . . . . . . . . . . . 18  |-  ( T  e.  BndLinOp  ->  T : ~H --> ~H )
494, 48ax-mp 8 . . . . . . . . . . . . . . . . 17  |-  T : ~H
--> ~H
50 nmopgt0 23407 . . . . . . . . . . . . . . . . 17  |-  ( T : ~H --> ~H  ->  ( ( normop `  T )  =/=  0  <->  0  <  ( normop `  T ) ) )
5149, 50ax-mp 8 . . . . . . . . . . . . . . . 16  |-  ( (
normop `  T )  =/=  0  <->  0  <  ( normop `  T ) )
5212recgt0i 9907 . . . . . . . . . . . . . . . 16  |-  ( 0  <  ( normop `  T
)  ->  0  <  ( 1  /  ( normop `  T ) ) )
5351, 52sylbi 188 . . . . . . . . . . . . . . 15  |-  ( (
normop `  T )  =/=  0  ->  0  <  ( 1  /  ( normop `  T ) ) )
54 0re 9083 . . . . . . . . . . . . . . . 16  |-  0  e.  RR
55 ltle 9155 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  RR  /\  ( 1  /  ( normop `  T ) )  e.  RR )  ->  (
0  <  ( 1  /  ( normop `  T
) )  ->  0  <_  ( 1  /  ( normop `  T ) ) ) )
5654, 55mpan 652 . . . . . . . . . . . . . . 15  |-  ( ( 1  /  ( normop `  T ) )  e.  RR  ->  ( 0  <  ( 1  / 
( normop `  T )
)  ->  0  <_  ( 1  /  ( normop `  T ) ) ) )
5747, 53, 56sylc 58 . . . . . . . . . . . . . 14  |-  ( (
normop `  T )  =/=  0  ->  0  <_  ( 1  /  ( normop `  T ) ) )
5847, 57absidd 12217 . . . . . . . . . . . . 13  |-  ( (
normop `  T )  =/=  0  ->  ( abs `  ( 1  /  ( normop `  T ) ) )  =  ( 1  / 
( normop `  T )
) )
5958adantr 452 . . . . . . . . . . . 12  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  ( abs `  ( 1  / 
( normop `  T )
) )  =  ( 1  /  ( normop `  T ) ) )
6059oveq1d 6088 . . . . . . . . . . 11  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  (
( abs `  (
1  /  ( normop `  T ) ) )  x.  ( normh `  (
( S  o.  T
) `  x )
) )  =  ( ( 1  /  ( normop `  T ) )  x.  ( normh `  ( ( S  o.  T ) `  x ) ) ) )
6146, 60eqtr4d 2470 . . . . . . . . . 10  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  (
( normh `  ( ( S  o.  T ) `  x ) )  / 
( normop `  T )
)  =  ( ( abs `  ( 1  /  ( normop `  T
) ) )  x.  ( normh `  ( ( S  o.  T ) `  x ) ) ) )
6242recclzi 9731 . . . . . . . . . . 11  |-  ( (
normop `  T )  =/=  0  ->  ( 1  /  ( normop `  T
) )  e.  CC )
63 norm-iii 22634 . . . . . . . . . . 11  |-  ( ( ( 1  /  ( normop `  T ) )  e.  CC  /\  ( ( S  o.  T ) `
 x )  e. 
~H )  ->  ( normh `  ( ( 1  /  ( normop `  T
) )  .h  (
( S  o.  T
) `  x )
) )  =  ( ( abs `  (
1  /  ( normop `  T ) ) )  x.  ( normh `  (
( S  o.  T
) `  x )
) ) )
6462, 38, 63syl2an 464 . . . . . . . . . 10  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  ( normh `  ( ( 1  /  ( normop `  T
) )  .h  (
( S  o.  T
) `  x )
) )  =  ( ( abs `  (
1  /  ( normop `  T ) ) )  x.  ( normh `  (
( S  o.  T
) `  x )
) ) )
6561, 64eqtr4d 2470 . . . . . . . . 9  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  (
( normh `  ( ( S  o.  T ) `  x ) )  / 
( normop `  T )
)  =  ( normh `  ( ( 1  / 
( normop `  T )
)  .h  ( ( S  o.  T ) `
 x ) ) ) )
6649ffvelrni 5861 . . . . . . . . . . . 12  |-  ( x  e.  ~H  ->  ( T `  x )  e.  ~H )
673lnopmuli 23467 . . . . . . . . . . . 12  |-  ( ( ( 1  /  ( normop `  T ) )  e.  CC  /\  ( T `
 x )  e. 
~H )  ->  ( S `  ( (
1  /  ( normop `  T ) )  .h  ( T `  x
) ) )  =  ( ( 1  / 
( normop `  T )
)  .h  ( S `
 ( T `  x ) ) ) )
6862, 66, 67syl2an 464 . . . . . . . . . . 11  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  ( S `  ( (
1  /  ( normop `  T ) )  .h  ( T `  x
) ) )  =  ( ( 1  / 
( normop `  T )
)  .h  ( S `
 ( T `  x ) ) ) )
69 bdopf 23357 . . . . . . . . . . . . . . 15  |-  ( S  e.  BndLinOp  ->  S : ~H --> ~H )
701, 69ax-mp 8 . . . . . . . . . . . . . 14  |-  S : ~H
--> ~H
7170, 49hocoi 23259 . . . . . . . . . . . . 13  |-  ( x  e.  ~H  ->  (
( S  o.  T
) `  x )  =  ( S `  ( T `  x ) ) )
7271oveq2d 6089 . . . . . . . . . . . 12  |-  ( x  e.  ~H  ->  (
( 1  /  ( normop `  T ) )  .h  ( ( S  o.  T ) `  x
) )  =  ( ( 1  /  ( normop `  T ) )  .h  ( S `  ( T `  x )
) ) )
7372adantl 453 . . . . . . . . . . 11  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  (
( 1  /  ( normop `  T ) )  .h  ( ( S  o.  T ) `  x
) )  =  ( ( 1  /  ( normop `  T ) )  .h  ( S `  ( T `  x )
) ) )
7468, 73eqtr4d 2470 . . . . . . . . . 10  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  ( S `  ( (
1  /  ( normop `  T ) )  .h  ( T `  x
) ) )  =  ( ( 1  / 
( normop `  T )
)  .h  ( ( S  o.  T ) `
 x ) ) )
7574fveq2d 5724 . . . . . . . . 9  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  ( normh `  ( S `  ( ( 1  / 
( normop `  T )
)  .h  ( T `
 x ) ) ) )  =  (
normh `  ( ( 1  /  ( normop `  T
) )  .h  (
( S  o.  T
) `  x )
) ) )
7665, 75eqtr4d 2470 . . . . . . . 8  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  (
( normh `  ( ( S  o.  T ) `  x ) )  / 
( normop `  T )
)  =  ( normh `  ( S `  (
( 1  /  ( normop `  T ) )  .h  ( T `  x
) ) ) ) )
7776adantrr 698 . . . . . . 7  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( normh `  (
( S  o.  T
) `  x )
)  /  ( normop `  T ) )  =  ( normh `  ( S `  ( ( 1  / 
( normop `  T )
)  .h  ( T `
 x ) ) ) ) )
78 hvmulcl 22508 . . . . . . . . . 10  |-  ( ( ( 1  /  ( normop `  T ) )  e.  CC  /\  ( T `
 x )  e. 
~H )  ->  (
( 1  /  ( normop `  T ) )  .h  ( T `  x
) )  e.  ~H )
7962, 66, 78syl2an 464 . . . . . . . . 9  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  (
( 1  /  ( normop `  T ) )  .h  ( T `  x
) )  e.  ~H )
8079adantrr 698 . . . . . . . 8  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( 1  / 
( normop `  T )
)  .h  ( T `
 x ) )  e.  ~H )
81 norm-iii 22634 . . . . . . . . . . . 12  |-  ( ( ( 1  /  ( normop `  T ) )  e.  CC  /\  ( T `
 x )  e. 
~H )  ->  ( normh `  ( ( 1  /  ( normop `  T
) )  .h  ( T `  x )
) )  =  ( ( abs `  (
1  /  ( normop `  T ) ) )  x.  ( normh `  ( T `  x )
) ) )
8262, 66, 81syl2an 464 . . . . . . . . . . 11  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  ( normh `  ( ( 1  /  ( normop `  T
) )  .h  ( T `  x )
) )  =  ( ( abs `  (
1  /  ( normop `  T ) ) )  x.  ( normh `  ( T `  x )
) ) )
83 normcl 22619 . . . . . . . . . . . . . . . 16  |-  ( ( T `  x )  e.  ~H  ->  ( normh `  ( T `  x ) )  e.  RR )
8466, 83syl 16 . . . . . . . . . . . . . . 15  |-  ( x  e.  ~H  ->  ( normh `  ( T `  x ) )  e.  RR )
8584recnd 9106 . . . . . . . . . . . . . 14  |-  ( x  e.  ~H  ->  ( normh `  ( T `  x ) )  e.  CC )
86 divrec2 9687 . . . . . . . . . . . . . . 15  |-  ( ( ( normh `  ( T `  x ) )  e.  CC  /\  ( normop `  T )  e.  CC  /\  ( normop `  T )  =/=  0 )  ->  (
( normh `  ( T `  x ) )  / 
( normop `  T )
)  =  ( ( 1  /  ( normop `  T ) )  x.  ( normh `  ( T `  x ) ) ) )
8742, 86mp3an2 1267 . . . . . . . . . . . . . 14  |-  ( ( ( normh `  ( T `  x ) )  e.  CC  /\  ( normop `  T )  =/=  0
)  ->  ( ( normh `  ( T `  x ) )  / 
( normop `  T )
)  =  ( ( 1  /  ( normop `  T ) )  x.  ( normh `  ( T `  x ) ) ) )
8885, 87sylan 458 . . . . . . . . . . . . 13  |-  ( ( x  e.  ~H  /\  ( normop `  T )  =/=  0 )  ->  (
( normh `  ( T `  x ) )  / 
( normop `  T )
)  =  ( ( 1  /  ( normop `  T ) )  x.  ( normh `  ( T `  x ) ) ) )
8988ancoms 440 . . . . . . . . . . . 12  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  (
( normh `  ( T `  x ) )  / 
( normop `  T )
)  =  ( ( 1  /  ( normop `  T ) )  x.  ( normh `  ( T `  x ) ) ) )
9059oveq1d 6088 . . . . . . . . . . . 12  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  (
( abs `  (
1  /  ( normop `  T ) ) )  x.  ( normh `  ( T `  x )
) )  =  ( ( 1  /  ( normop `  T ) )  x.  ( normh `  ( T `  x ) ) ) )
9189, 90eqtr4d 2470 . . . . . . . . . . 11  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  (
( normh `  ( T `  x ) )  / 
( normop `  T )
)  =  ( ( abs `  ( 1  /  ( normop `  T
) ) )  x.  ( normh `  ( T `  x ) ) ) )
9282, 91eqtr4d 2470 . . . . . . . . . 10  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  ( normh `  ( ( 1  /  ( normop `  T
) )  .h  ( T `  x )
) )  =  ( ( normh `  ( T `  x ) )  / 
( normop `  T )
) )
9392adantrr 698 . . . . . . . . 9  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( normh `  ( (
1  /  ( normop `  T ) )  .h  ( T `  x
) ) )  =  ( ( normh `  ( T `  x )
)  /  ( normop `  T ) ) )
94 nmoplb 23402 . . . . . . . . . . . . 13  |-  ( ( T : ~H --> ~H  /\  x  e.  ~H  /\  ( normh `  x )  <_ 
1 )  ->  ( normh `  ( T `  x ) )  <_ 
( normop `  T )
)
9549, 94mp3an1 1266 . . . . . . . . . . . 12  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  ( normh `  ( T `  x ) )  <_ 
( normop `  T )
)
9642mulid2i 9085 . . . . . . . . . . . 12  |-  ( 1  x.  ( normop `  T
) )  =  (
normop `  T )
9795, 96syl6breqr 4244 . . . . . . . . . . 11  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  ( normh `  ( T `  x ) )  <_ 
( 1  x.  ( normop `  T ) ) )
9897adantl 453 . . . . . . . . . 10  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( normh `  ( T `  x ) )  <_ 
( 1  x.  ( normop `  T ) ) )
9984adantr 452 . . . . . . . . . . . . 13  |-  ( ( x  e.  ~H  /\  ( normop `  T )  =/=  0 )  ->  ( normh `  ( T `  x ) )  e.  RR )
100 1re 9082 . . . . . . . . . . . . . 14  |-  1  e.  RR
101100a1i 11 . . . . . . . . . . . . 13  |-  ( ( x  e.  ~H  /\  ( normop `  T )  =/=  0 )  ->  1  e.  RR )
10212a1i 11 . . . . . . . . . . . . 13  |-  ( ( x  e.  ~H  /\  ( normop `  T )  =/=  0 )  ->  ( normop `  T )  e.  RR )
10351biimpi 187 . . . . . . . . . . . . . 14  |-  ( (
normop `  T )  =/=  0  ->  0  <  (
normop `  T ) )
104103adantl 453 . . . . . . . . . . . . 13  |-  ( ( x  e.  ~H  /\  ( normop `  T )  =/=  0 )  ->  0  <  ( normop `  T )
)
105 ledivmul2 9879 . . . . . . . . . . . . 13  |-  ( ( ( normh `  ( T `  x ) )  e.  RR  /\  1  e.  RR  /\  ( (
normop `  T )  e.  RR  /\  0  < 
( normop `  T )
) )  ->  (
( ( normh `  ( T `  x )
)  /  ( normop `  T ) )  <_ 
1  <->  ( normh `  ( T `  x )
)  <_  ( 1  x.  ( normop `  T
) ) ) )
10699, 101, 102, 104, 105syl112anc 1188 . . . . . . . . . . . 12  |-  ( ( x  e.  ~H  /\  ( normop `  T )  =/=  0 )  ->  (
( ( normh `  ( T `  x )
)  /  ( normop `  T ) )  <_ 
1  <->  ( normh `  ( T `  x )
)  <_  ( 1  x.  ( normop `  T
) ) ) )
107106ancoms 440 . . . . . . . . . . 11  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  (
( ( normh `  ( T `  x )
)  /  ( normop `  T ) )  <_ 
1  <->  ( normh `  ( T `  x )
)  <_  ( 1  x.  ( normop `  T
) ) ) )
108107adantrr 698 . . . . . . . . . 10  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( ( normh `  ( T `  x
) )  /  ( normop `  T ) )  <_ 
1  <->  ( normh `  ( T `  x )
)  <_  ( 1  x.  ( normop `  T
) ) ) )
10998, 108mpbird 224 . . . . . . . . 9  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( normh `  ( T `  x )
)  /  ( normop `  T ) )  <_ 
1 )
11093, 109eqbrtrd 4224 . . . . . . . 8  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( normh `  ( (
1  /  ( normop `  T ) )  .h  ( T `  x
) ) )  <_ 
1 )
111 nmoplb 23402 . . . . . . . . 9  |-  ( ( S : ~H --> ~H  /\  ( ( 1  / 
( normop `  T )
)  .h  ( T `
 x ) )  e.  ~H  /\  ( normh `  ( ( 1  /  ( normop `  T
) )  .h  ( T `  x )
) )  <_  1
)  ->  ( normh `  ( S `  (
( 1  /  ( normop `  T ) )  .h  ( T `  x
) ) ) )  <_  ( normop `  S
) )
11270, 111mp3an1 1266 . . . . . . . 8  |-  ( ( ( ( 1  / 
( normop `  T )
)  .h  ( T `
 x ) )  e.  ~H  /\  ( normh `  ( ( 1  /  ( normop `  T
) )  .h  ( T `  x )
) )  <_  1
)  ->  ( normh `  ( S `  (
( 1  /  ( normop `  T ) )  .h  ( T `  x
) ) ) )  <_  ( normop `  S
) )
11380, 110, 112syl2anc 643 . . . . . . 7  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( normh `  ( S `  ( ( 1  / 
( normop `  T )
)  .h  ( T `
 x ) ) ) )  <_  ( normop `  S ) )
11477, 113eqbrtrd 4224 . . . . . 6  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( normh `  (
( S  o.  T
) `  x )
)  /  ( normop `  T ) )  <_ 
( normop `  S )
)
11540ad2antrl 709 . . . . . . 7  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( normh `  ( ( S  o.  T ) `  x ) )  e.  RR )
11610a1i 11 . . . . . . 7  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( normop `  S )  e.  RR )
117103adantr 452 . . . . . . . 8  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
0  <  ( normop `  T
) )
118117, 12jctil 524 . . . . . . 7  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( normop `  T
)  e.  RR  /\  0  <  ( normop `  T
) ) )
119 ledivmul2 9879 . . . . . . 7  |-  ( ( ( normh `  ( ( S  o.  T ) `  x ) )  e.  RR  /\  ( normop `  S )  e.  RR  /\  ( ( normop `  T
)  e.  RR  /\  0  <  ( normop `  T
) ) )  -> 
( ( ( normh `  ( ( S  o.  T ) `  x
) )  /  ( normop `  T ) )  <_ 
( normop `  S )  <->  (
normh `  ( ( S  o.  T ) `  x ) )  <_ 
( ( normop `  S
)  x.  ( normop `  T ) ) ) )
120115, 116, 118, 119syl3anc 1184 . . . . . 6  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( ( normh `  ( ( S  o.  T ) `  x
) )  /  ( normop `  T ) )  <_ 
( normop `  S )  <->  (
normh `  ( ( S  o.  T ) `  x ) )  <_ 
( ( normop `  S
)  x.  ( normop `  T ) ) ) )
121114, 120mpbid 202 . . . . 5  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( normh `  ( ( S  o.  T ) `  x ) )  <_ 
( ( normop `  S
)  x.  ( normop `  T ) ) )
12237, 121sylanbr 460 . . . 4  |-  ( ( -.  ( normop `  T
)  =  0  /\  ( x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( normh `  ( ( S  o.  T ) `  x ) )  <_ 
( ( normop `  S
)  x.  ( normop `  T ) ) )
12336, 122pm2.61ian 766 . . 3  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  ( normh `  ( ( S  o.  T ) `  x ) )  <_ 
( ( normop `  S
)  x.  ( normop `  T ) ) )
124123ex 424 . 2  |-  ( x  e.  ~H  ->  (
( normh `  x )  <_  1  ->  ( normh `  ( ( S  o.  T ) `  x
) )  <_  (
( normop `  S )  x.  ( normop `  T )
) ) )
12516, 124mprgbir 2768 1  |-  ( normop `  ( S  o.  T
) )  <_  (
( normop `  S )  x.  ( normop `  T )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   class class class wbr 4204    o. ccom 4874   -->wf 5442   ` cfv 5446  (class class class)co 6073   CCcc 8980   RRcr 8981   0cc0 8982   1c1 8983    x. cmul 8987   RR*cxr 9111    < clt 9112    <_ cle 9113    / cdiv 9669   abscabs 12031   ~Hchil 22414    .h csm 22416   normhcno 22418   0hc0v 22419   0hopch0o 22438   normopcnop 22440   LinOpclo 22442   BndLinOpcbo 22443
This theorem is referenced by:  bdopcoi  23593  unierri  23599
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cc 8307  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061  ax-mulf 9062  ax-hilex 22494  ax-hfvadd 22495  ax-hvcom 22496  ax-hvass 22497  ax-hv0cl 22498  ax-hvaddid 22499  ax-hfvmul 22500  ax-hvmulid 22501  ax-hvmulass 22502  ax-hvdistr1 22503  ax-hvdistr2 22504  ax-hvmul0 22505  ax-hfi 22573  ax-his1 22576  ax-his2 22577  ax-his3 22578  ax-his4 22579  ax-hcompl 22696
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-omul 6721  df-er 6897  df-map 7012  df-pm 7013  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-fi 7408  df-sup 7438  df-oi 7471  df-card 7818  df-acn 7821  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-n0 10214  df-z 10275  df-dec 10375  df-uz 10481  df-q 10567  df-rp 10605  df-xneg 10702  df-xadd 10703  df-xmul 10704  df-ioo 10912  df-ico 10914  df-icc 10915  df-fz 11036  df-fzo 11128  df-fl 11194  df-seq 11316  df-exp 11375  df-hash 11611  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-clim 12274  df-rlim 12275  df-sum 12472  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-starv 13536  df-sca 13537  df-vsca 13538  df-tset 13540  df-ple 13541  df-ds 13543  df-unif 13544  df-hom 13545  df-cco 13546  df-rest 13642  df-topn 13643  df-topgen 13659  df-pt 13660  df-prds 13663  df-xrs 13718  df-0g 13719  df-gsum 13720  df-qtop 13725  df-imas 13726  df-xps 13728  df-mre 13803  df-mrc 13804  df-acs 13806  df-mnd 14682  df-submnd 14731  df-mulg 14807  df-cntz 15108  df-cmn 15406  df-psmet 16686  df-xmet 16687  df-met 16688  df-bl 16689  df-mopn 16690  df-fbas 16691  df-fg 16692  df-cnfld 16696  df-top 16955  df-bases 16957  df-topon 16958  df-topsp 16959  df-cld 17075  df-ntr 17076  df-cls 17077  df-nei 17154  df-cn 17283  df-cnp 17284  df-lm 17285  df-haus 17371  df-tx 17586  df-hmeo 17779  df-fil 17870  df-fm 17962  df-flim 17963  df-flf 17964  df-xms 18342  df-ms 18343  df-tms 18344  df-cfil 19200  df-cau 19201  df-cmet 19202  df-grpo 21771  df-gid 21772  df-ginv 21773  df-gdiv 21774  df-ablo 21862  df-subgo 21882  df-vc 22017  df-nv 22063  df-va 22066  df-ba 22067  df-sm 22068  df-0v 22069  df-vs 22070  df-nmcv 22071  df-ims 22072  df-dip 22189  df-ssp 22213  df-lno 22237  df-nmoo 22238  df-0o 22240  df-ph 22306  df-cbn 22357  df-hnorm 22463  df-hba 22464  df-hvsub 22466  df-hlim 22467  df-hcau 22468  df-sh 22701  df-ch 22716  df-oc 22746  df-ch0 22747  df-shs 22802  df-pjh 22889  df-h0op 23243  df-nmop 23334  df-lnop 23336  df-bdop 23337  df-hmop 23339
  Copyright terms: Public domain W3C validator