HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopcoi Unicode version

Theorem nmopcoi 23439
Description: Upper bound for the norm of the composition of two bounded linear operators. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoptri.1  |-  S  e.  BndLinOp
nmoptri.2  |-  T  e.  BndLinOp
Assertion
Ref Expression
nmopcoi  |-  ( normop `  ( S  o.  T
) )  <_  (
( normop `  S )  x.  ( normop `  T )
)

Proof of Theorem nmopcoi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 nmoptri.1 . . . . . 6  |-  S  e.  BndLinOp
2 bdopln 23205 . . . . . 6  |-  ( S  e.  BndLinOp  ->  S  e.  LinOp )
31, 2ax-mp 8 . . . . 5  |-  S  e. 
LinOp
4 nmoptri.2 . . . . . 6  |-  T  e.  BndLinOp
5 bdopln 23205 . . . . . 6  |-  ( T  e.  BndLinOp  ->  T  e.  LinOp )
64, 5ax-mp 8 . . . . 5  |-  T  e. 
LinOp
73, 6lnopcoi 23347 . . . 4  |-  ( S  o.  T )  e. 
LinOp
87lnopfi 23313 . . 3  |-  ( S  o.  T ) : ~H --> ~H
9 nmopre 23214 . . . . . 6  |-  ( S  e.  BndLinOp  ->  ( normop `  S
)  e.  RR )
101, 9ax-mp 8 . . . . 5  |-  ( normop `  S )  e.  RR
11 nmopre 23214 . . . . . 6  |-  ( T  e.  BndLinOp  ->  ( normop `  T
)  e.  RR )
124, 11ax-mp 8 . . . . 5  |-  ( normop `  T )  e.  RR
1310, 12remulcli 9030 . . . 4  |-  ( (
normop `  S )  x.  ( normop `  T )
)  e.  RR
1413rexri 9063 . . 3  |-  ( (
normop `  S )  x.  ( normop `  T )
)  e.  RR*
15 nmopub 23252 . . 3  |-  ( ( ( S  o.  T
) : ~H --> ~H  /\  ( ( normop `  S
)  x.  ( normop `  T ) )  e. 
RR* )  ->  (
( normop `  ( S  o.  T ) )  <_ 
( ( normop `  S
)  x.  ( normop `  T ) )  <->  A. x  e.  ~H  ( ( normh `  x )  <_  1  ->  ( normh `  ( ( S  o.  T ) `  x ) )  <_ 
( ( normop `  S
)  x.  ( normop `  T ) ) ) ) )
168, 14, 15mp2an 654 . 2  |-  ( (
normop `  ( S  o.  T ) )  <_ 
( ( normop `  S
)  x.  ( normop `  T ) )  <->  A. x  e.  ~H  ( ( normh `  x )  <_  1  ->  ( normh `  ( ( S  o.  T ) `  x ) )  <_ 
( ( normop `  S
)  x.  ( normop `  T ) ) ) )
17 0le0 10006 . . . . . . 7  |-  0  <_  0
1817a1i 11 . . . . . 6  |-  ( ( ( normop `  T )  =  0  /\  x  e.  ~H )  ->  0  <_  0 )
193, 6lnopco0i 23348 . . . . . . . 8  |-  ( (
normop `  T )  =  0  ->  ( normop `  ( S  o.  T )
)  =  0 )
207nmlnop0iHIL 23340 . . . . . . . 8  |-  ( (
normop `  ( S  o.  T ) )  =  0  <->  ( S  o.  T )  =  0hop )
2119, 20sylib 189 . . . . . . 7  |-  ( (
normop `  T )  =  0  ->  ( S  o.  T )  =  0hop )
22 fveq1 5660 . . . . . . . . 9  |-  ( ( S  o.  T )  =  0hop  ->  ( ( S  o.  T ) `
 x )  =  ( 0hop `  x
) )
2322fveq2d 5665 . . . . . . . 8  |-  ( ( S  o.  T )  =  0hop  ->  ( normh `  ( ( S  o.  T ) `  x
) )  =  (
normh `  ( 0hop `  x
) ) )
24 ho0val 23094 . . . . . . . . . 10  |-  ( x  e.  ~H  ->  ( 0hop `  x )  =  0h )
2524fveq2d 5665 . . . . . . . . 9  |-  ( x  e.  ~H  ->  ( normh `  ( 0hop `  x
) )  =  (
normh `  0h ) )
26 norm0 22471 . . . . . . . . 9  |-  ( normh `  0h )  =  0
2725, 26syl6eq 2428 . . . . . . . 8  |-  ( x  e.  ~H  ->  ( normh `  ( 0hop `  x
) )  =  0 )
2823, 27sylan9eq 2432 . . . . . . 7  |-  ( ( ( S  o.  T
)  =  0hop  /\  x  e.  ~H )  ->  ( normh `  ( ( S  o.  T ) `  x ) )  =  0 )
2921, 28sylan 458 . . . . . 6  |-  ( ( ( normop `  T )  =  0  /\  x  e.  ~H )  ->  ( normh `  ( ( S  o.  T ) `  x ) )  =  0 )
30 oveq2 6021 . . . . . . . 8  |-  ( (
normop `  T )  =  0  ->  ( ( normop `  S )  x.  ( normop `  T ) )  =  ( ( normop `  S
)  x.  0 ) )
3110recni 9028 . . . . . . . . 9  |-  ( normop `  S )  e.  CC
3231mul01i 9181 . . . . . . . 8  |-  ( (
normop `  S )  x.  0 )  =  0
3330, 32syl6eq 2428 . . . . . . 7  |-  ( (
normop `  T )  =  0  ->  ( ( normop `  S )  x.  ( normop `  T ) )  =  0 )
3433adantr 452 . . . . . 6  |-  ( ( ( normop `  T )  =  0  /\  x  e.  ~H )  ->  (
( normop `  S )  x.  ( normop `  T )
)  =  0 )
3518, 29, 343brtr4d 4176 . . . . 5  |-  ( ( ( normop `  T )  =  0  /\  x  e.  ~H )  ->  ( normh `  ( ( S  o.  T ) `  x ) )  <_ 
( ( normop `  S
)  x.  ( normop `  T ) ) )
3635adantrr 698 . . . 4  |-  ( ( ( normop `  T )  =  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( normh `  ( ( S  o.  T ) `  x ) )  <_ 
( ( normop `  S
)  x.  ( normop `  T ) ) )
37 df-ne 2545 . . . . 5  |-  ( (
normop `  T )  =/=  0  <->  -.  ( normop `  T
)  =  0 )
388ffvelrni 5801 . . . . . . . . . . . . . . 15  |-  ( x  e.  ~H  ->  (
( S  o.  T
) `  x )  e.  ~H )
39 normcl 22468 . . . . . . . . . . . . . . 15  |-  ( ( ( S  o.  T
) `  x )  e.  ~H  ->  ( normh `  ( ( S  o.  T ) `  x
) )  e.  RR )
4038, 39syl 16 . . . . . . . . . . . . . 14  |-  ( x  e.  ~H  ->  ( normh `  ( ( S  o.  T ) `  x ) )  e.  RR )
4140recnd 9040 . . . . . . . . . . . . 13  |-  ( x  e.  ~H  ->  ( normh `  ( ( S  o.  T ) `  x ) )  e.  CC )
4212recni 9028 . . . . . . . . . . . . . 14  |-  ( normop `  T )  e.  CC
43 divrec2 9620 . . . . . . . . . . . . . 14  |-  ( ( ( normh `  ( ( S  o.  T ) `  x ) )  e.  CC  /\  ( normop `  T )  e.  CC  /\  ( normop `  T )  =/=  0 )  ->  (
( normh `  ( ( S  o.  T ) `  x ) )  / 
( normop `  T )
)  =  ( ( 1  /  ( normop `  T ) )  x.  ( normh `  ( ( S  o.  T ) `  x ) ) ) )
4442, 43mp3an2 1267 . . . . . . . . . . . . 13  |-  ( ( ( normh `  ( ( S  o.  T ) `  x ) )  e.  CC  /\  ( normop `  T )  =/=  0
)  ->  ( ( normh `  ( ( S  o.  T ) `  x ) )  / 
( normop `  T )
)  =  ( ( 1  /  ( normop `  T ) )  x.  ( normh `  ( ( S  o.  T ) `  x ) ) ) )
4541, 44sylan 458 . . . . . . . . . . . 12  |-  ( ( x  e.  ~H  /\  ( normop `  T )  =/=  0 )  ->  (
( normh `  ( ( S  o.  T ) `  x ) )  / 
( normop `  T )
)  =  ( ( 1  /  ( normop `  T ) )  x.  ( normh `  ( ( S  o.  T ) `  x ) ) ) )
4645ancoms 440 . . . . . . . . . . 11  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  (
( normh `  ( ( S  o.  T ) `  x ) )  / 
( normop `  T )
)  =  ( ( 1  /  ( normop `  T ) )  x.  ( normh `  ( ( S  o.  T ) `  x ) ) ) )
4712rerecclzi 9703 . . . . . . . . . . . . . 14  |-  ( (
normop `  T )  =/=  0  ->  ( 1  /  ( normop `  T
) )  e.  RR )
48 bdopf 23206 . . . . . . . . . . . . . . . . . 18  |-  ( T  e.  BndLinOp  ->  T : ~H --> ~H )
494, 48ax-mp 8 . . . . . . . . . . . . . . . . 17  |-  T : ~H
--> ~H
50 nmopgt0 23256 . . . . . . . . . . . . . . . . 17  |-  ( T : ~H --> ~H  ->  ( ( normop `  T )  =/=  0  <->  0  <  ( normop `  T ) ) )
5149, 50ax-mp 8 . . . . . . . . . . . . . . . 16  |-  ( (
normop `  T )  =/=  0  <->  0  <  ( normop `  T ) )
5212recgt0i 9840 . . . . . . . . . . . . . . . 16  |-  ( 0  <  ( normop `  T
)  ->  0  <  ( 1  /  ( normop `  T ) ) )
5351, 52sylbi 188 . . . . . . . . . . . . . . 15  |-  ( (
normop `  T )  =/=  0  ->  0  <  ( 1  /  ( normop `  T ) ) )
54 0re 9017 . . . . . . . . . . . . . . . 16  |-  0  e.  RR
55 ltle 9089 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  RR  /\  ( 1  /  ( normop `  T ) )  e.  RR )  ->  (
0  <  ( 1  /  ( normop `  T
) )  ->  0  <_  ( 1  /  ( normop `  T ) ) ) )
5654, 55mpan 652 . . . . . . . . . . . . . . 15  |-  ( ( 1  /  ( normop `  T ) )  e.  RR  ->  ( 0  <  ( 1  / 
( normop `  T )
)  ->  0  <_  ( 1  /  ( normop `  T ) ) ) )
5747, 53, 56sylc 58 . . . . . . . . . . . . . 14  |-  ( (
normop `  T )  =/=  0  ->  0  <_  ( 1  /  ( normop `  T ) ) )
5847, 57absidd 12145 . . . . . . . . . . . . 13  |-  ( (
normop `  T )  =/=  0  ->  ( abs `  ( 1  /  ( normop `  T ) ) )  =  ( 1  / 
( normop `  T )
) )
5958adantr 452 . . . . . . . . . . . 12  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  ( abs `  ( 1  / 
( normop `  T )
) )  =  ( 1  /  ( normop `  T ) ) )
6059oveq1d 6028 . . . . . . . . . . 11  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  (
( abs `  (
1  /  ( normop `  T ) ) )  x.  ( normh `  (
( S  o.  T
) `  x )
) )  =  ( ( 1  /  ( normop `  T ) )  x.  ( normh `  ( ( S  o.  T ) `  x ) ) ) )
6146, 60eqtr4d 2415 . . . . . . . . . 10  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  (
( normh `  ( ( S  o.  T ) `  x ) )  / 
( normop `  T )
)  =  ( ( abs `  ( 1  /  ( normop `  T
) ) )  x.  ( normh `  ( ( S  o.  T ) `  x ) ) ) )
6242recclzi 9664 . . . . . . . . . . 11  |-  ( (
normop `  T )  =/=  0  ->  ( 1  /  ( normop `  T
) )  e.  CC )
63 norm-iii 22483 . . . . . . . . . . 11  |-  ( ( ( 1  /  ( normop `  T ) )  e.  CC  /\  ( ( S  o.  T ) `
 x )  e. 
~H )  ->  ( normh `  ( ( 1  /  ( normop `  T
) )  .h  (
( S  o.  T
) `  x )
) )  =  ( ( abs `  (
1  /  ( normop `  T ) ) )  x.  ( normh `  (
( S  o.  T
) `  x )
) ) )
6462, 38, 63syl2an 464 . . . . . . . . . 10  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  ( normh `  ( ( 1  /  ( normop `  T
) )  .h  (
( S  o.  T
) `  x )
) )  =  ( ( abs `  (
1  /  ( normop `  T ) ) )  x.  ( normh `  (
( S  o.  T
) `  x )
) ) )
6561, 64eqtr4d 2415 . . . . . . . . 9  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  (
( normh `  ( ( S  o.  T ) `  x ) )  / 
( normop `  T )
)  =  ( normh `  ( ( 1  / 
( normop `  T )
)  .h  ( ( S  o.  T ) `
 x ) ) ) )
6649ffvelrni 5801 . . . . . . . . . . . 12  |-  ( x  e.  ~H  ->  ( T `  x )  e.  ~H )
673lnopmuli 23316 . . . . . . . . . . . 12  |-  ( ( ( 1  /  ( normop `  T ) )  e.  CC  /\  ( T `
 x )  e. 
~H )  ->  ( S `  ( (
1  /  ( normop `  T ) )  .h  ( T `  x
) ) )  =  ( ( 1  / 
( normop `  T )
)  .h  ( S `
 ( T `  x ) ) ) )
6862, 66, 67syl2an 464 . . . . . . . . . . 11  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  ( S `  ( (
1  /  ( normop `  T ) )  .h  ( T `  x
) ) )  =  ( ( 1  / 
( normop `  T )
)  .h  ( S `
 ( T `  x ) ) ) )
69 bdopf 23206 . . . . . . . . . . . . . . 15  |-  ( S  e.  BndLinOp  ->  S : ~H --> ~H )
701, 69ax-mp 8 . . . . . . . . . . . . . 14  |-  S : ~H
--> ~H
7170, 49hocoi 23108 . . . . . . . . . . . . 13  |-  ( x  e.  ~H  ->  (
( S  o.  T
) `  x )  =  ( S `  ( T `  x ) ) )
7271oveq2d 6029 . . . . . . . . . . . 12  |-  ( x  e.  ~H  ->  (
( 1  /  ( normop `  T ) )  .h  ( ( S  o.  T ) `  x
) )  =  ( ( 1  /  ( normop `  T ) )  .h  ( S `  ( T `  x )
) ) )
7372adantl 453 . . . . . . . . . . 11  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  (
( 1  /  ( normop `  T ) )  .h  ( ( S  o.  T ) `  x
) )  =  ( ( 1  /  ( normop `  T ) )  .h  ( S `  ( T `  x )
) ) )
7468, 73eqtr4d 2415 . . . . . . . . . 10  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  ( S `  ( (
1  /  ( normop `  T ) )  .h  ( T `  x
) ) )  =  ( ( 1  / 
( normop `  T )
)  .h  ( ( S  o.  T ) `
 x ) ) )
7574fveq2d 5665 . . . . . . . . 9  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  ( normh `  ( S `  ( ( 1  / 
( normop `  T )
)  .h  ( T `
 x ) ) ) )  =  (
normh `  ( ( 1  /  ( normop `  T
) )  .h  (
( S  o.  T
) `  x )
) ) )
7665, 75eqtr4d 2415 . . . . . . . 8  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  (
( normh `  ( ( S  o.  T ) `  x ) )  / 
( normop `  T )
)  =  ( normh `  ( S `  (
( 1  /  ( normop `  T ) )  .h  ( T `  x
) ) ) ) )
7776adantrr 698 . . . . . . 7  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( normh `  (
( S  o.  T
) `  x )
)  /  ( normop `  T ) )  =  ( normh `  ( S `  ( ( 1  / 
( normop `  T )
)  .h  ( T `
 x ) ) ) ) )
78 hvmulcl 22357 . . . . . . . . . 10  |-  ( ( ( 1  /  ( normop `  T ) )  e.  CC  /\  ( T `
 x )  e. 
~H )  ->  (
( 1  /  ( normop `  T ) )  .h  ( T `  x
) )  e.  ~H )
7962, 66, 78syl2an 464 . . . . . . . . 9  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  (
( 1  /  ( normop `  T ) )  .h  ( T `  x
) )  e.  ~H )
8079adantrr 698 . . . . . . . 8  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( 1  / 
( normop `  T )
)  .h  ( T `
 x ) )  e.  ~H )
81 norm-iii 22483 . . . . . . . . . . . 12  |-  ( ( ( 1  /  ( normop `  T ) )  e.  CC  /\  ( T `
 x )  e. 
~H )  ->  ( normh `  ( ( 1  /  ( normop `  T
) )  .h  ( T `  x )
) )  =  ( ( abs `  (
1  /  ( normop `  T ) ) )  x.  ( normh `  ( T `  x )
) ) )
8262, 66, 81syl2an 464 . . . . . . . . . . 11  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  ( normh `  ( ( 1  /  ( normop `  T
) )  .h  ( T `  x )
) )  =  ( ( abs `  (
1  /  ( normop `  T ) ) )  x.  ( normh `  ( T `  x )
) ) )
83 normcl 22468 . . . . . . . . . . . . . . . 16  |-  ( ( T `  x )  e.  ~H  ->  ( normh `  ( T `  x ) )  e.  RR )
8466, 83syl 16 . . . . . . . . . . . . . . 15  |-  ( x  e.  ~H  ->  ( normh `  ( T `  x ) )  e.  RR )
8584recnd 9040 . . . . . . . . . . . . . 14  |-  ( x  e.  ~H  ->  ( normh `  ( T `  x ) )  e.  CC )
86 divrec2 9620 . . . . . . . . . . . . . . 15  |-  ( ( ( normh `  ( T `  x ) )  e.  CC  /\  ( normop `  T )  e.  CC  /\  ( normop `  T )  =/=  0 )  ->  (
( normh `  ( T `  x ) )  / 
( normop `  T )
)  =  ( ( 1  /  ( normop `  T ) )  x.  ( normh `  ( T `  x ) ) ) )
8742, 86mp3an2 1267 . . . . . . . . . . . . . 14  |-  ( ( ( normh `  ( T `  x ) )  e.  CC  /\  ( normop `  T )  =/=  0
)  ->  ( ( normh `  ( T `  x ) )  / 
( normop `  T )
)  =  ( ( 1  /  ( normop `  T ) )  x.  ( normh `  ( T `  x ) ) ) )
8885, 87sylan 458 . . . . . . . . . . . . 13  |-  ( ( x  e.  ~H  /\  ( normop `  T )  =/=  0 )  ->  (
( normh `  ( T `  x ) )  / 
( normop `  T )
)  =  ( ( 1  /  ( normop `  T ) )  x.  ( normh `  ( T `  x ) ) ) )
8988ancoms 440 . . . . . . . . . . . 12  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  (
( normh `  ( T `  x ) )  / 
( normop `  T )
)  =  ( ( 1  /  ( normop `  T ) )  x.  ( normh `  ( T `  x ) ) ) )
9059oveq1d 6028 . . . . . . . . . . . 12  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  (
( abs `  (
1  /  ( normop `  T ) ) )  x.  ( normh `  ( T `  x )
) )  =  ( ( 1  /  ( normop `  T ) )  x.  ( normh `  ( T `  x ) ) ) )
9189, 90eqtr4d 2415 . . . . . . . . . . 11  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  (
( normh `  ( T `  x ) )  / 
( normop `  T )
)  =  ( ( abs `  ( 1  /  ( normop `  T
) ) )  x.  ( normh `  ( T `  x ) ) ) )
9282, 91eqtr4d 2415 . . . . . . . . . 10  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  ( normh `  ( ( 1  /  ( normop `  T
) )  .h  ( T `  x )
) )  =  ( ( normh `  ( T `  x ) )  / 
( normop `  T )
) )
9392adantrr 698 . . . . . . . . 9  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( normh `  ( (
1  /  ( normop `  T ) )  .h  ( T `  x
) ) )  =  ( ( normh `  ( T `  x )
)  /  ( normop `  T ) ) )
94 nmoplb 23251 . . . . . . . . . . . . 13  |-  ( ( T : ~H --> ~H  /\  x  e.  ~H  /\  ( normh `  x )  <_ 
1 )  ->  ( normh `  ( T `  x ) )  <_ 
( normop `  T )
)
9549, 94mp3an1 1266 . . . . . . . . . . . 12  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  ( normh `  ( T `  x ) )  <_ 
( normop `  T )
)
9642mulid2i 9019 . . . . . . . . . . . 12  |-  ( 1  x.  ( normop `  T
) )  =  (
normop `  T )
9795, 96syl6breqr 4186 . . . . . . . . . . 11  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  ( normh `  ( T `  x ) )  <_ 
( 1  x.  ( normop `  T ) ) )
9897adantl 453 . . . . . . . . . 10  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( normh `  ( T `  x ) )  <_ 
( 1  x.  ( normop `  T ) ) )
9984adantr 452 . . . . . . . . . . . . 13  |-  ( ( x  e.  ~H  /\  ( normop `  T )  =/=  0 )  ->  ( normh `  ( T `  x ) )  e.  RR )
100 1re 9016 . . . . . . . . . . . . . 14  |-  1  e.  RR
101100a1i 11 . . . . . . . . . . . . 13  |-  ( ( x  e.  ~H  /\  ( normop `  T )  =/=  0 )  ->  1  e.  RR )
10212a1i 11 . . . . . . . . . . . . 13  |-  ( ( x  e.  ~H  /\  ( normop `  T )  =/=  0 )  ->  ( normop `  T )  e.  RR )
10351biimpi 187 . . . . . . . . . . . . . 14  |-  ( (
normop `  T )  =/=  0  ->  0  <  (
normop `  T ) )
104103adantl 453 . . . . . . . . . . . . 13  |-  ( ( x  e.  ~H  /\  ( normop `  T )  =/=  0 )  ->  0  <  ( normop `  T )
)
105 ledivmul2 9812 . . . . . . . . . . . . 13  |-  ( ( ( normh `  ( T `  x ) )  e.  RR  /\  1  e.  RR  /\  ( (
normop `  T )  e.  RR  /\  0  < 
( normop `  T )
) )  ->  (
( ( normh `  ( T `  x )
)  /  ( normop `  T ) )  <_ 
1  <->  ( normh `  ( T `  x )
)  <_  ( 1  x.  ( normop `  T
) ) ) )
10699, 101, 102, 104, 105syl112anc 1188 . . . . . . . . . . . 12  |-  ( ( x  e.  ~H  /\  ( normop `  T )  =/=  0 )  ->  (
( ( normh `  ( T `  x )
)  /  ( normop `  T ) )  <_ 
1  <->  ( normh `  ( T `  x )
)  <_  ( 1  x.  ( normop `  T
) ) ) )
107106ancoms 440 . . . . . . . . . . 11  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  (
( ( normh `  ( T `  x )
)  /  ( normop `  T ) )  <_ 
1  <->  ( normh `  ( T `  x )
)  <_  ( 1  x.  ( normop `  T
) ) ) )
108107adantrr 698 . . . . . . . . . 10  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( ( normh `  ( T `  x
) )  /  ( normop `  T ) )  <_ 
1  <->  ( normh `  ( T `  x )
)  <_  ( 1  x.  ( normop `  T
) ) ) )
10998, 108mpbird 224 . . . . . . . . 9  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( normh `  ( T `  x )
)  /  ( normop `  T ) )  <_ 
1 )
11093, 109eqbrtrd 4166 . . . . . . . 8  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( normh `  ( (
1  /  ( normop `  T ) )  .h  ( T `  x
) ) )  <_ 
1 )
111 nmoplb 23251 . . . . . . . . 9  |-  ( ( S : ~H --> ~H  /\  ( ( 1  / 
( normop `  T )
)  .h  ( T `
 x ) )  e.  ~H  /\  ( normh `  ( ( 1  /  ( normop `  T
) )  .h  ( T `  x )
) )  <_  1
)  ->  ( normh `  ( S `  (
( 1  /  ( normop `  T ) )  .h  ( T `  x
) ) ) )  <_  ( normop `  S
) )
11270, 111mp3an1 1266 . . . . . . . 8  |-  ( ( ( ( 1  / 
( normop `  T )
)  .h  ( T `
 x ) )  e.  ~H  /\  ( normh `  ( ( 1  /  ( normop `  T
) )  .h  ( T `  x )
) )  <_  1
)  ->  ( normh `  ( S `  (
( 1  /  ( normop `  T ) )  .h  ( T `  x
) ) ) )  <_  ( normop `  S
) )
11380, 110, 112syl2anc 643 . . . . . . 7  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( normh `  ( S `  ( ( 1  / 
( normop `  T )
)  .h  ( T `
 x ) ) ) )  <_  ( normop `  S ) )
11477, 113eqbrtrd 4166 . . . . . 6  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( normh `  (
( S  o.  T
) `  x )
)  /  ( normop `  T ) )  <_ 
( normop `  S )
)
11540ad2antrl 709 . . . . . . 7  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( normh `  ( ( S  o.  T ) `  x ) )  e.  RR )
11610a1i 11 . . . . . . 7  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( normop `  S )  e.  RR )
117103adantr 452 . . . . . . . 8  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
0  <  ( normop `  T
) )
118117, 12jctil 524 . . . . . . 7  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( normop `  T
)  e.  RR  /\  0  <  ( normop `  T
) ) )
119 ledivmul2 9812 . . . . . . 7  |-  ( ( ( normh `  ( ( S  o.  T ) `  x ) )  e.  RR  /\  ( normop `  S )  e.  RR  /\  ( ( normop `  T
)  e.  RR  /\  0  <  ( normop `  T
) ) )  -> 
( ( ( normh `  ( ( S  o.  T ) `  x
) )  /  ( normop `  T ) )  <_ 
( normop `  S )  <->  (
normh `  ( ( S  o.  T ) `  x ) )  <_ 
( ( normop `  S
)  x.  ( normop `  T ) ) ) )
120115, 116, 118, 119syl3anc 1184 . . . . . 6  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( ( normh `  ( ( S  o.  T ) `  x
) )  /  ( normop `  T ) )  <_ 
( normop `  S )  <->  (
normh `  ( ( S  o.  T ) `  x ) )  <_ 
( ( normop `  S
)  x.  ( normop `  T ) ) ) )
121114, 120mpbid 202 . . . . 5  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( normh `  ( ( S  o.  T ) `  x ) )  <_ 
( ( normop `  S
)  x.  ( normop `  T ) ) )
12237, 121sylanbr 460 . . . 4  |-  ( ( -.  ( normop `  T
)  =  0  /\  ( x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( normh `  ( ( S  o.  T ) `  x ) )  <_ 
( ( normop `  S
)  x.  ( normop `  T ) ) )
12336, 122pm2.61ian 766 . . 3  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  ( normh `  ( ( S  o.  T ) `  x ) )  <_ 
( ( normop `  S
)  x.  ( normop `  T ) ) )
124123ex 424 . 2  |-  ( x  e.  ~H  ->  (
( normh `  x )  <_  1  ->  ( normh `  ( ( S  o.  T ) `  x
) )  <_  (
( normop `  S )  x.  ( normop `  T )
) ) )
12516, 124mprgbir 2712 1  |-  ( normop `  ( S  o.  T
) )  <_  (
( normop `  S )  x.  ( normop `  T )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2543   A.wral 2642   class class class wbr 4146    o. ccom 4815   -->wf 5383   ` cfv 5387  (class class class)co 6013   CCcc 8914   RRcr 8915   0cc0 8916   1c1 8917    x. cmul 8921   RR*cxr 9045    < clt 9046    <_ cle 9047    / cdiv 9602   abscabs 11959   ~Hchil 22263    .h csm 22265   normhcno 22267   0hc0v 22268   0hopch0o 22287   normopcnop 22289   LinOpclo 22291   BndLinOpcbo 22292
This theorem is referenced by:  bdopcoi  23442  unierri  23448
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-inf2 7522  ax-cc 8241  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993  ax-pre-sup 8994  ax-addf 8995  ax-mulf 8996  ax-hilex 22343  ax-hfvadd 22344  ax-hvcom 22345  ax-hvass 22346  ax-hv0cl 22347  ax-hvaddid 22348  ax-hfvmul 22349  ax-hvmulid 22350  ax-hvmulass 22351  ax-hvdistr1 22352  ax-hvdistr2 22353  ax-hvmul0 22354  ax-hfi 22422  ax-his1 22425  ax-his2 22426  ax-his3 22427  ax-his4 22428  ax-hcompl 22545
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-iin 4031  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-se 4476  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-isom 5396  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-of 6237  df-1st 6281  df-2nd 6282  df-riota 6478  df-recs 6562  df-rdg 6597  df-1o 6653  df-2o 6654  df-oadd 6657  df-omul 6658  df-er 6834  df-map 6949  df-pm 6950  df-ixp 6993  df-en 7039  df-dom 7040  df-sdom 7041  df-fin 7042  df-fi 7344  df-sup 7374  df-oi 7405  df-card 7752  df-acn 7755  df-cda 7974  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-div 9603  df-nn 9926  df-2 9983  df-3 9984  df-4 9985  df-5 9986  df-6 9987  df-7 9988  df-8 9989  df-9 9990  df-10 9991  df-n0 10147  df-z 10208  df-dec 10308  df-uz 10414  df-q 10500  df-rp 10538  df-xneg 10635  df-xadd 10636  df-xmul 10637  df-ioo 10845  df-ico 10847  df-icc 10848  df-fz 10969  df-fzo 11059  df-fl 11122  df-seq 11244  df-exp 11303  df-hash 11539  df-cj 11824  df-re 11825  df-im 11826  df-sqr 11960  df-abs 11961  df-clim 12202  df-rlim 12203  df-sum 12400  df-struct 13391  df-ndx 13392  df-slot 13393  df-base 13394  df-sets 13395  df-ress 13396  df-plusg 13462  df-mulr 13463  df-starv 13464  df-sca 13465  df-vsca 13466  df-tset 13468  df-ple 13469  df-ds 13471  df-unif 13472  df-hom 13473  df-cco 13474  df-rest 13570  df-topn 13571  df-topgen 13587  df-pt 13588  df-prds 13591  df-xrs 13646  df-0g 13647  df-gsum 13648  df-qtop 13653  df-imas 13654  df-xps 13656  df-mre 13731  df-mrc 13732  df-acs 13734  df-mnd 14610  df-submnd 14659  df-mulg 14735  df-cntz 15036  df-cmn 15334  df-xmet 16612  df-met 16613  df-bl 16614  df-mopn 16615  df-fbas 16616  df-fg 16617  df-cnfld 16620  df-top 16879  df-bases 16881  df-topon 16882  df-topsp 16883  df-cld 16999  df-ntr 17000  df-cls 17001  df-nei 17078  df-cn 17206  df-cnp 17207  df-lm 17208  df-haus 17294  df-tx 17508  df-hmeo 17701  df-fil 17792  df-fm 17884  df-flim 17885  df-flf 17886  df-xms 18252  df-ms 18253  df-tms 18254  df-cfil 19072  df-cau 19073  df-cmet 19074  df-grpo 21620  df-gid 21621  df-ginv 21622  df-gdiv 21623  df-ablo 21711  df-subgo 21731  df-vc 21866  df-nv 21912  df-va 21915  df-ba 21916  df-sm 21917  df-0v 21918  df-vs 21919  df-nmcv 21920  df-ims 21921  df-dip 22038  df-ssp 22062  df-lno 22086  df-nmoo 22087  df-0o 22089  df-ph 22155  df-cbn 22206  df-hnorm 22312  df-hba 22313  df-hvsub 22315  df-hlim 22316  df-hcau 22317  df-sh 22550  df-ch 22565  df-oc 22595  df-ch0 22596  df-shs 22651  df-pjh 22738  df-h0op 23092  df-nmop 23183  df-lnop 23185  df-bdop 23186  df-hmop 23188
  Copyright terms: Public domain W3C validator