HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopnegi Unicode version

Theorem nmopnegi 22545
Description: Value of the norm of the negative of a Hilbert space operator. Unlike nmophmi 22611, the operator does not have to be bounded. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
nmopneg.1  |-  T : ~H
--> ~H
Assertion
Ref Expression
nmopnegi  |-  ( normop `  ( -u 1  .op 
T ) )  =  ( normop `  T )

Proof of Theorem nmopnegi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neg1cn 9813 . . . . . . . . . 10  |-  -u 1  e.  CC
2 nmopneg.1 . . . . . . . . . 10  |-  T : ~H
--> ~H
3 homval 22321 . . . . . . . . . 10  |-  ( (
-u 1  e.  CC  /\  T : ~H --> ~H  /\  y  e.  ~H )  ->  ( ( -u 1  .op  T ) `  y
)  =  ( -u
1  .h  ( T `
 y ) ) )
41, 2, 3mp3an12 1267 . . . . . . . . 9  |-  ( y  e.  ~H  ->  (
( -u 1  .op  T
) `  y )  =  ( -u 1  .h  ( T `  y
) ) )
54fveq2d 5529 . . . . . . . 8  |-  ( y  e.  ~H  ->  ( normh `  ( ( -u
1  .op  T ) `  y ) )  =  ( normh `  ( -u 1  .h  ( T `  y
) ) ) )
62ffvelrni 5664 . . . . . . . . 9  |-  ( y  e.  ~H  ->  ( T `  y )  e.  ~H )
7 normneg 21723 . . . . . . . . 9  |-  ( ( T `  y )  e.  ~H  ->  ( normh `  ( -u 1  .h  ( T `  y
) ) )  =  ( normh `  ( T `  y ) ) )
86, 7syl 15 . . . . . . . 8  |-  ( y  e.  ~H  ->  ( normh `  ( -u 1  .h  ( T `  y
) ) )  =  ( normh `  ( T `  y ) ) )
95, 8eqtrd 2315 . . . . . . 7  |-  ( y  e.  ~H  ->  ( normh `  ( ( -u
1  .op  T ) `  y ) )  =  ( normh `  ( T `  y ) ) )
109eqeq2d 2294 . . . . . 6  |-  ( y  e.  ~H  ->  (
x  =  ( normh `  ( ( -u 1  .op  T ) `  y
) )  <->  x  =  ( normh `  ( T `  y ) ) ) )
1110anbi2d 684 . . . . 5  |-  ( y  e.  ~H  ->  (
( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( ( -u 1  .op  T ) `  y
) ) )  <->  ( ( normh `  y )  <_ 
1  /\  x  =  ( normh `  ( T `  y ) ) ) ) )
1211rexbiia 2576 . . . 4  |-  ( E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( normh `  ( ( -u 1  .op  T ) `
 y ) ) )  <->  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) ) )
1312abbii 2395 . . 3  |-  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( ( -u 1  .op  T ) `  y
) ) ) }  =  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) ) }
1413supeq1i 7200 . 2  |-  sup ( { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( normh `  ( ( -u 1  .op  T ) `
 y ) ) ) } ,  RR* ,  <  )  =  sup ( { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( normh `  ( T `  y ) ) ) } ,  RR* ,  <  )
15 homulcl 22339 . . . 4  |-  ( (
-u 1  e.  CC  /\  T : ~H --> ~H )  ->  ( -u 1  .op 
T ) : ~H --> ~H )
161, 2, 15mp2an 653 . . 3  |-  ( -u
1  .op  T ) : ~H --> ~H
17 nmopval 22436 . . 3  |-  ( (
-u 1  .op  T
) : ~H --> ~H  ->  (
normop `  ( -u 1  .op  T ) )  =  sup ( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( ( -u 1  .op  T ) `  y
) ) ) } ,  RR* ,  <  )
)
1816, 17ax-mp 8 . 2  |-  ( normop `  ( -u 1  .op 
T ) )  =  sup ( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( ( -u 1  .op  T ) `  y
) ) ) } ,  RR* ,  <  )
19 nmopval 22436 . . 3  |-  ( T : ~H --> ~H  ->  (
normop `  T )  =  sup ( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) ) } ,  RR* ,  <  )
)
202, 19ax-mp 8 . 2  |-  ( normop `  T )  =  sup ( { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( normh `  ( T `  y ) ) ) } ,  RR* ,  <  )
2114, 18, 203eqtr4i 2313 1  |-  ( normop `  ( -u 1  .op 
T ) )  =  ( normop `  T )
Colors of variables: wff set class
Syntax hints:    /\ wa 358    = wceq 1623    e. wcel 1684   {cab 2269   E.wrex 2544   class class class wbr 4023   -->wf 5251   ` cfv 5255  (class class class)co 5858   supcsup 7193   CCcc 8735   1c1 8738   RR*cxr 8866    < clt 8867    <_ cle 8868   -ucneg 9038   ~Hchil 21499    .h csm 21501   normhcno 21503    .op chot 21519   normopcnop 21525
This theorem is referenced by:  nmoptri2i  22679
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-hilex 21579  ax-hfvadd 21580  ax-hvcom 21581  ax-hv0cl 21583  ax-hvaddid 21584  ax-hfvmul 21585  ax-hvmulid 21586  ax-hvmulass 21587  ax-hvdistr1 21588  ax-hvmul0 21590  ax-hfi 21658  ax-his1 21661  ax-his3 21663  ax-his4 21664
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-hnorm 21548  df-hvsub 21551  df-homul 22311  df-nmop 22419
  Copyright terms: Public domain W3C validator