HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopub Unicode version

Theorem nmopub 22504
Description: An upper bound for an operator norm. (Contributed by NM, 7-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmopub  |-  ( ( T : ~H --> ~H  /\  A  e.  RR* )  -> 
( ( normop `  T
)  <_  A  <->  A. x  e.  ~H  ( ( normh `  x )  <_  1  ->  ( normh `  ( T `  x ) )  <_  A ) ) )
Distinct variable groups:    x, A    x, T

Proof of Theorem nmopub
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmopval 22452 . . . 4  |-  ( T : ~H --> ~H  ->  (
normop `  T )  =  sup ( { y  |  E. x  e. 
~H  ( ( normh `  x )  <_  1  /\  y  =  ( normh `  ( T `  x ) ) ) } ,  RR* ,  <  ) )
21adantr 451 . . 3  |-  ( ( T : ~H --> ~H  /\  A  e.  RR* )  -> 
( normop `  T )  =  sup ( { y  |  E. x  e. 
~H  ( ( normh `  x )  <_  1  /\  y  =  ( normh `  ( T `  x ) ) ) } ,  RR* ,  <  ) )
32breq1d 4049 . 2  |-  ( ( T : ~H --> ~H  /\  A  e.  RR* )  -> 
( ( normop `  T
)  <_  A  <->  sup ( { y  |  E. x  e.  ~H  (
( normh `  x )  <_  1  /\  y  =  ( normh `  ( T `  x ) ) ) } ,  RR* ,  <  )  <_  A ) )
4 nmopsetretALT 22459 . . . . 5  |-  ( T : ~H --> ~H  ->  { y  |  E. x  e.  ~H  ( ( normh `  x )  <_  1  /\  y  =  ( normh `  ( T `  x ) ) ) }  C_  RR )
5 ressxr 8892 . . . . 5  |-  RR  C_  RR*
64, 5syl6ss 3204 . . . 4  |-  ( T : ~H --> ~H  ->  { y  |  E. x  e.  ~H  ( ( normh `  x )  <_  1  /\  y  =  ( normh `  ( T `  x ) ) ) }  C_  RR* )
7 supxrleub 10661 . . . 4  |-  ( ( { y  |  E. x  e.  ~H  (
( normh `  x )  <_  1  /\  y  =  ( normh `  ( T `  x ) ) ) }  C_  RR*  /\  A  e.  RR* )  ->  ( sup ( { y  |  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  y  =  ( normh `  ( T `  x
) ) ) } ,  RR* ,  <  )  <_  A  <->  A. z  e.  {
y  |  E. x  e.  ~H  ( ( normh `  x )  <_  1  /\  y  =  ( normh `  ( T `  x ) ) ) } z  <_  A
) )
86, 7sylan 457 . . 3  |-  ( ( T : ~H --> ~H  /\  A  e.  RR* )  -> 
( sup ( { y  |  E. x  e.  ~H  ( ( normh `  x )  <_  1  /\  y  =  ( normh `  ( T `  x ) ) ) } ,  RR* ,  <  )  <_  A  <->  A. z  e.  { y  |  E. x  e.  ~H  (
( normh `  x )  <_  1  /\  y  =  ( normh `  ( T `  x ) ) ) } z  <_  A
) )
9 ancom 437 . . . . . . 7  |-  ( ( ( normh `  x )  <_  1  /\  y  =  ( normh `  ( T `  x ) ) )  <-> 
( y  =  (
normh `  ( T `  x ) )  /\  ( normh `  x )  <_  1 ) )
10 eqeq1 2302 . . . . . . . 8  |-  ( y  =  z  ->  (
y  =  ( normh `  ( T `  x
) )  <->  z  =  ( normh `  ( T `  x ) ) ) )
1110anbi1d 685 . . . . . . 7  |-  ( y  =  z  ->  (
( y  =  (
normh `  ( T `  x ) )  /\  ( normh `  x )  <_  1 )  <->  ( z  =  ( normh `  ( T `  x )
)  /\  ( normh `  x )  <_  1
) ) )
129, 11syl5bb 248 . . . . . 6  |-  ( y  =  z  ->  (
( ( normh `  x
)  <_  1  /\  y  =  ( normh `  ( T `  x
) ) )  <->  ( z  =  ( normh `  ( T `  x )
)  /\  ( normh `  x )  <_  1
) ) )
1312rexbidv 2577 . . . . 5  |-  ( y  =  z  ->  ( E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  y  =  ( normh `  ( T `  x
) ) )  <->  E. x  e.  ~H  ( z  =  ( normh `  ( T `  x ) )  /\  ( normh `  x )  <_  1 ) ) )
1413ralab 2939 . . . 4  |-  ( A. z  e.  { y  |  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  y  =  ( normh `  ( T `  x
) ) ) } z  <_  A  <->  A. z
( E. x  e. 
~H  ( z  =  ( normh `  ( T `  x ) )  /\  ( normh `  x )  <_  1 )  ->  z  <_  A ) )
15 ralcom4 2819 . . . . 5  |-  ( A. x  e.  ~H  A. z
( ( z  =  ( normh `  ( T `  x ) )  /\  ( normh `  x )  <_  1 )  ->  z  <_  A )  <->  A. z A. x  e.  ~H  ( ( z  =  ( normh `  ( T `  x ) )  /\  ( normh `  x )  <_  1 )  ->  z  <_  A ) )
16 impexp 433 . . . . . . . 8  |-  ( ( ( z  =  (
normh `  ( T `  x ) )  /\  ( normh `  x )  <_  1 )  ->  z  <_  A )  <->  ( z  =  ( normh `  ( T `  x )
)  ->  ( ( normh `  x )  <_ 
1  ->  z  <_  A ) ) )
1716albii 1556 . . . . . . 7  |-  ( A. z ( ( z  =  ( normh `  ( T `  x )
)  /\  ( normh `  x )  <_  1
)  ->  z  <_  A )  <->  A. z ( z  =  ( normh `  ( T `  x )
)  ->  ( ( normh `  x )  <_ 
1  ->  z  <_  A ) ) )
18 fvex 5555 . . . . . . . 8  |-  ( normh `  ( T `  x
) )  e.  _V
19 breq1 4042 . . . . . . . . 9  |-  ( z  =  ( normh `  ( T `  x )
)  ->  ( z  <_  A  <->  ( normh `  ( T `  x )
)  <_  A )
)
2019imbi2d 307 . . . . . . . 8  |-  ( z  =  ( normh `  ( T `  x )
)  ->  ( (
( normh `  x )  <_  1  ->  z  <_  A )  <->  ( ( normh `  x )  <_  1  ->  ( normh `  ( T `  x ) )  <_  A ) ) )
2118, 20ceqsalv 2827 . . . . . . 7  |-  ( A. z ( z  =  ( normh `  ( T `  x ) )  -> 
( ( normh `  x
)  <_  1  ->  z  <_  A ) )  <-> 
( ( normh `  x
)  <_  1  ->  (
normh `  ( T `  x ) )  <_  A ) )
2217, 21bitri 240 . . . . . 6  |-  ( A. z ( ( z  =  ( normh `  ( T `  x )
)  /\  ( normh `  x )  <_  1
)  ->  z  <_  A )  <->  ( ( normh `  x )  <_  1  ->  ( normh `  ( T `  x ) )  <_  A ) )
2322ralbii 2580 . . . . 5  |-  ( A. x  e.  ~H  A. z
( ( z  =  ( normh `  ( T `  x ) )  /\  ( normh `  x )  <_  1 )  ->  z  <_  A )  <->  A. x  e.  ~H  ( ( normh `  x )  <_  1  ->  ( normh `  ( T `  x ) )  <_  A ) )
24 r19.23v 2672 . . . . . 6  |-  ( A. x  e.  ~H  (
( z  =  (
normh `  ( T `  x ) )  /\  ( normh `  x )  <_  1 )  ->  z  <_  A )  <->  ( E. x  e.  ~H  (
z  =  ( normh `  ( T `  x
) )  /\  ( normh `  x )  <_ 
1 )  ->  z  <_  A ) )
2524albii 1556 . . . . 5  |-  ( A. z A. x  e.  ~H  ( ( z  =  ( normh `  ( T `  x ) )  /\  ( normh `  x )  <_  1 )  ->  z  <_  A )  <->  A. z
( E. x  e. 
~H  ( z  =  ( normh `  ( T `  x ) )  /\  ( normh `  x )  <_  1 )  ->  z  <_  A ) )
2615, 23, 253bitr3i 266 . . . 4  |-  ( A. x  e.  ~H  (
( normh `  x )  <_  1  ->  ( normh `  ( T `  x
) )  <_  A
)  <->  A. z ( E. x  e.  ~H  (
z  =  ( normh `  ( T `  x
) )  /\  ( normh `  x )  <_ 
1 )  ->  z  <_  A ) )
2714, 26bitr4i 243 . . 3  |-  ( A. z  e.  { y  |  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  y  =  ( normh `  ( T `  x
) ) ) } z  <_  A  <->  A. x  e.  ~H  ( ( normh `  x )  <_  1  ->  ( normh `  ( T `  x ) )  <_  A ) )
288, 27syl6bb 252 . 2  |-  ( ( T : ~H --> ~H  /\  A  e.  RR* )  -> 
( sup ( { y  |  E. x  e.  ~H  ( ( normh `  x )  <_  1  /\  y  =  ( normh `  ( T `  x ) ) ) } ,  RR* ,  <  )  <_  A  <->  A. x  e.  ~H  ( ( normh `  x )  <_  1  ->  ( normh `  ( T `  x ) )  <_  A ) ) )
293, 28bitrd 244 1  |-  ( ( T : ~H --> ~H  /\  A  e.  RR* )  -> 
( ( normop `  T
)  <_  A  <->  A. x  e.  ~H  ( ( normh `  x )  <_  1  ->  ( normh `  ( T `  x ) )  <_  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1530    = wceq 1632    e. wcel 1696   {cab 2282   A.wral 2556   E.wrex 2557    C_ wss 3165   class class class wbr 4039   -->wf 5267   ` cfv 5271   supcsup 7209   RRcr 8752   1c1 8754   RR*cxr 8882    < clt 8883    <_ cle 8884   ~Hchil 21515   normhcno 21519   normopcnop 21541
This theorem is referenced by:  nmopub2tALT  22505  nmophmi  22627  nmopadjlem  22685  nmoptrii  22690  nmopcoi  22691  nmopcoadji  22697
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-hilex 21595  ax-hv0cl 21599  ax-hvmul0 21606  ax-hfi 21674  ax-his1 21677  ax-his3 21679  ax-his4 21680
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-hnorm 21564  df-nmop 22435
  Copyright terms: Public domain W3C validator