HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopun Structured version   Unicode version

Theorem nmopun 23548
Description: Norm of a unitary Hilbert space operator. (Contributed by NM, 25-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmopun  |-  ( ( ~H  =/=  0H  /\  T  e.  UniOp )  -> 
( normop `  T )  =  1 )

Proof of Theorem nmopun
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unoplin 23454 . . . . 5  |-  ( T  e.  UniOp  ->  T  e.  LinOp
)
2 lnopf 23393 . . . . 5  |-  ( T  e.  LinOp  ->  T : ~H
--> ~H )
31, 2syl 16 . . . 4  |-  ( T  e.  UniOp  ->  T : ~H
--> ~H )
4 nmopval 23390 . . . 4  |-  ( T : ~H --> ~H  ->  (
normop `  T )  =  sup ( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) ) } ,  RR* ,  <  )
)
53, 4syl 16 . . 3  |-  ( T  e.  UniOp  ->  ( normop `  T
)  =  sup ( { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( normh `  ( T `  y ) ) ) } ,  RR* ,  <  ) )
65adantl 454 . 2  |-  ( ( ~H  =/=  0H  /\  T  e.  UniOp )  -> 
( normop `  T )  =  sup ( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) ) } ,  RR* ,  <  )
)
7 nmopsetretHIL 23398 . . . . . . 7  |-  ( T : ~H --> ~H  ->  { x  |  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  x  =  ( normh `  ( T `  y ) ) ) }  C_  RR )
8 ressxr 9160 . . . . . . 7  |-  RR  C_  RR*
97, 8syl6ss 3346 . . . . . 6  |-  ( T : ~H --> ~H  ->  { x  |  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  x  =  ( normh `  ( T `  y ) ) ) }  C_  RR* )
103, 9syl 16 . . . . 5  |-  ( T  e.  UniOp  ->  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) ) } 
C_  RR* )
1110adantl 454 . . . 4  |-  ( ( ~H  =/=  0H  /\  T  e.  UniOp )  ->  { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( normh `  ( T `  y ) ) ) }  C_  RR* )
12 1re 9121 . . . . 5  |-  1  e.  RR
1312rexri 9168 . . . 4  |-  1  e.  RR*
1411, 13jctir 526 . . 3  |-  ( ( ~H  =/=  0H  /\  T  e.  UniOp )  -> 
( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) ) } 
C_  RR*  /\  1  e. 
RR* ) )
15 vex 2965 . . . . . . 7  |-  z  e. 
_V
16 eqeq1 2448 . . . . . . . . 9  |-  ( x  =  z  ->  (
x  =  ( normh `  ( T `  y
) )  <->  z  =  ( normh `  ( T `  y ) ) ) )
1716anbi2d 686 . . . . . . . 8  |-  ( x  =  z  ->  (
( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) )  <->  ( ( normh `  y )  <_ 
1  /\  z  =  ( normh `  ( T `  y ) ) ) ) )
1817rexbidv 2732 . . . . . . 7  |-  ( x  =  z  ->  ( E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) )  <->  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  z  =  ( normh `  ( T `  y ) ) ) ) )
1915, 18elab 3088 . . . . . 6  |-  ( z  e.  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) ) }  <->  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  z  =  ( normh `  ( T `  y
) ) ) )
20 unopnorm 23451 . . . . . . . . . . 11  |-  ( ( T  e.  UniOp  /\  y  e.  ~H )  ->  ( normh `  ( T `  y ) )  =  ( normh `  y )
)
2120eqeq2d 2453 . . . . . . . . . 10  |-  ( ( T  e.  UniOp  /\  y  e.  ~H )  ->  (
z  =  ( normh `  ( T `  y
) )  <->  z  =  ( normh `  y )
) )
2221anbi2d 686 . . . . . . . . 9  |-  ( ( T  e.  UniOp  /\  y  e.  ~H )  ->  (
( ( normh `  y
)  <_  1  /\  z  =  ( normh `  ( T `  y
) ) )  <->  ( ( normh `  y )  <_ 
1  /\  z  =  ( normh `  y )
) ) )
23 breq1 4240 . . . . . . . . . 10  |-  ( z  =  ( normh `  y
)  ->  ( z  <_  1  <->  ( normh `  y
)  <_  1 ) )
2423biimparc 475 . . . . . . . . 9  |-  ( ( ( normh `  y )  <_  1  /\  z  =  ( normh `  y )
)  ->  z  <_  1 )
2522, 24syl6bi 221 . . . . . . . 8  |-  ( ( T  e.  UniOp  /\  y  e.  ~H )  ->  (
( ( normh `  y
)  <_  1  /\  z  =  ( normh `  ( T `  y
) ) )  -> 
z  <_  1 ) )
2625rexlimdva 2836 . . . . . . 7  |-  ( T  e.  UniOp  ->  ( E. y  e.  ~H  (
( normh `  y )  <_  1  /\  z  =  ( normh `  ( T `  y ) ) )  ->  z  <_  1
) )
2726imp 420 . . . . . 6  |-  ( ( T  e.  UniOp  /\  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  z  =  ( normh `  ( T `  y ) ) ) )  ->  z  <_  1 )
2819, 27sylan2b 463 . . . . 5  |-  ( ( T  e.  UniOp  /\  z  e.  { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( normh `  ( T `  y ) ) ) } )  ->  z  <_  1 )
2928ralrimiva 2795 . . . 4  |-  ( T  e.  UniOp  ->  A. z  e.  { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( normh `  ( T `  y ) ) ) } z  <_  1
)
3029adantl 454 . . 3  |-  ( ( ~H  =/=  0H  /\  T  e.  UniOp )  ->  A. z  e.  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) ) } z  <_  1 )
31 hne0 23080 . . . . . . . . . . . 12  |-  ( ~H  =/=  0H  <->  E. y  e.  ~H  y  =/=  0h )
32 norm1hex 22784 . . . . . . . . . . . 12  |-  ( E. y  e.  ~H  y  =/=  0h  <->  E. y  e.  ~H  ( normh `  y )  =  1 )
3331, 32bitri 242 . . . . . . . . . . 11  |-  ( ~H  =/=  0H  <->  E. y  e.  ~H  ( normh `  y
)  =  1 )
3433biimpi 188 . . . . . . . . . 10  |-  ( ~H  =/=  0H  ->  E. y  e.  ~H  ( normh `  y
)  =  1 )
3534adantr 453 . . . . . . . . 9  |-  ( ( ~H  =/=  0H  /\  T  e.  UniOp )  ->  E. y  e.  ~H  ( normh `  y )  =  1 )
36 1le1 9681 . . . . . . . . . . . . . 14  |-  1  <_  1
37 breq1 4240 . . . . . . . . . . . . . 14  |-  ( (
normh `  y )  =  1  ->  ( ( normh `  y )  <_ 
1  <->  1  <_  1
) )
3836, 37mpbiri 226 . . . . . . . . . . . . 13  |-  ( (
normh `  y )  =  1  ->  ( normh `  y )  <_  1
)
3938a1i 11 . . . . . . . . . . . 12  |-  ( ( T  e.  UniOp  /\  y  e.  ~H )  ->  (
( normh `  y )  =  1  ->  ( normh `  y )  <_ 
1 ) )
4020adantr 453 . . . . . . . . . . . . . . 15  |-  ( ( ( T  e.  UniOp  /\  y  e.  ~H )  /\  ( normh `  y )  =  1 )  -> 
( normh `  ( T `  y ) )  =  ( normh `  y )
)
41 eqeq2 2451 . . . . . . . . . . . . . . . 16  |-  ( (
normh `  y )  =  1  ->  ( ( normh `  ( T `  y ) )  =  ( normh `  y )  <->  (
normh `  ( T `  y ) )  =  1 ) )
4241adantl 454 . . . . . . . . . . . . . . 15  |-  ( ( ( T  e.  UniOp  /\  y  e.  ~H )  /\  ( normh `  y )  =  1 )  -> 
( ( normh `  ( T `  y )
)  =  ( normh `  y )  <->  ( normh `  ( T `  y
) )  =  1 ) )
4340, 42mpbid 203 . . . . . . . . . . . . . 14  |-  ( ( ( T  e.  UniOp  /\  y  e.  ~H )  /\  ( normh `  y )  =  1 )  -> 
( normh `  ( T `  y ) )  =  1 )
4443eqcomd 2447 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  UniOp  /\  y  e.  ~H )  /\  ( normh `  y )  =  1 )  -> 
1  =  ( normh `  ( T `  y
) ) )
4544ex 425 . . . . . . . . . . . 12  |-  ( ( T  e.  UniOp  /\  y  e.  ~H )  ->  (
( normh `  y )  =  1  ->  1  =  ( normh `  ( T `  y )
) ) )
4639, 45jcad 521 . . . . . . . . . . 11  |-  ( ( T  e.  UniOp  /\  y  e.  ~H )  ->  (
( normh `  y )  =  1  ->  (
( normh `  y )  <_  1  /\  1  =  ( normh `  ( T `  y ) ) ) ) )
4746adantll 696 . . . . . . . . . 10  |-  ( ( ( ~H  =/=  0H  /\  T  e.  UniOp )  /\  y  e.  ~H )  ->  ( ( normh `  y
)  =  1  -> 
( ( normh `  y
)  <_  1  /\  1  =  ( normh `  ( T `  y
) ) ) ) )
4847reximdva 2824 . . . . . . . . 9  |-  ( ( ~H  =/=  0H  /\  T  e.  UniOp )  -> 
( E. y  e. 
~H  ( normh `  y
)  =  1  ->  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  1  =  ( normh `  ( T `  y
) ) ) ) )
4935, 48mpd 15 . . . . . . . 8  |-  ( ( ~H  =/=  0H  /\  T  e.  UniOp )  ->  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  1  =  ( normh `  ( T `  y
) ) ) )
50 1ex 9117 . . . . . . . . 9  |-  1  e.  _V
51 eqeq1 2448 . . . . . . . . . . 11  |-  ( x  =  1  ->  (
x  =  ( normh `  ( T `  y
) )  <->  1  =  ( normh `  ( T `  y ) ) ) )
5251anbi2d 686 . . . . . . . . . 10  |-  ( x  =  1  ->  (
( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) )  <->  ( ( normh `  y )  <_ 
1  /\  1  =  ( normh `  ( T `  y ) ) ) ) )
5352rexbidv 2732 . . . . . . . . 9  |-  ( x  =  1  ->  ( E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) )  <->  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  1  =  ( normh `  ( T `  y ) ) ) ) )
5450, 53elab 3088 . . . . . . . 8  |-  ( 1  e.  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) ) }  <->  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  1  =  ( normh `  ( T `  y
) ) ) )
5549, 54sylibr 205 . . . . . . 7  |-  ( ( ~H  =/=  0H  /\  T  e.  UniOp )  -> 
1  e.  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) ) } )
5655adantr 453 . . . . . 6  |-  ( ( ( ~H  =/=  0H  /\  T  e.  UniOp )  /\  z  e.  RR )  ->  1  e.  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) ) } )
57 breq2 4241 . . . . . . 7  |-  ( w  =  1  ->  (
z  <  w  <->  z  <  1 ) )
5857rspcev 3058 . . . . . 6  |-  ( ( 1  e.  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) ) }  /\  z  <  1
)  ->  E. w  e.  { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( normh `  ( T `  y ) ) ) } z  <  w
)
5956, 58sylan 459 . . . . 5  |-  ( ( ( ( ~H  =/=  0H 
/\  T  e.  UniOp )  /\  z  e.  RR )  /\  z  <  1
)  ->  E. w  e.  { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( normh `  ( T `  y ) ) ) } z  <  w
)
6059ex 425 . . . 4  |-  ( ( ( ~H  =/=  0H  /\  T  e.  UniOp )  /\  z  e.  RR )  ->  ( z  <  1  ->  E. w  e.  {
x  |  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  x  =  ( normh `  ( T `  y ) ) ) } z  <  w
) )
6160ralrimiva 2795 . . 3  |-  ( ( ~H  =/=  0H  /\  T  e.  UniOp )  ->  A. z  e.  RR  ( z  <  1  ->  E. w  e.  {
x  |  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  x  =  ( normh `  ( T `  y ) ) ) } z  <  w
) )
62 supxr2 10923 . . 3  |-  ( ( ( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) ) } 
C_  RR*  /\  1  e. 
RR* )  /\  ( A. z  e.  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) ) } z  <_  1  /\  A. z  e.  RR  (
z  <  1  ->  E. w  e.  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) ) } z  <  w ) ) )  ->  sup ( { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( normh `  ( T `  y ) ) ) } ,  RR* ,  <  )  =  1 )
6314, 30, 61, 62syl12anc 1183 . 2  |-  ( ( ~H  =/=  0H  /\  T  e.  UniOp )  ->  sup ( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) ) } ,  RR* ,  <  )  =  1 )
646, 63eqtrd 2474 1  |-  ( ( ~H  =/=  0H  /\  T  e.  UniOp )  -> 
( normop `  T )  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1727   {cab 2428    =/= wne 2605   A.wral 2711   E.wrex 2712    C_ wss 3306   class class class wbr 4237   -->wf 5479   ` cfv 5483   supcsup 7474   RRcr 9020   1c1 9022   RR*cxr 9150    < clt 9151    <_ cle 9152   ~Hchil 22453   normhcno 22457   0hc0v 22458   0Hc0h 22469   normopcnop 22479   LinOpclo 22481   UniOpcuo 22483
This theorem is referenced by:  unopbd  23549  unierri  23638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-cnex 9077  ax-resscn 9078  ax-1cn 9079  ax-icn 9080  ax-addcl 9081  ax-addrcl 9082  ax-mulcl 9083  ax-mulrcl 9084  ax-mulcom 9085  ax-addass 9086  ax-mulass 9087  ax-distr 9088  ax-i2m1 9089  ax-1ne0 9090  ax-1rid 9091  ax-rnegex 9092  ax-rrecex 9093  ax-cnre 9094  ax-pre-lttri 9095  ax-pre-lttrn 9096  ax-pre-ltadd 9097  ax-pre-mulgt0 9098  ax-pre-sup 9099  ax-hilex 22533  ax-hfvadd 22534  ax-hvcom 22535  ax-hvass 22536  ax-hv0cl 22537  ax-hvaddid 22538  ax-hfvmul 22539  ax-hvmulid 22540  ax-hvmulass 22541  ax-hvdistr1 22542  ax-hvdistr2 22543  ax-hvmul0 22544  ax-hfi 22612  ax-his1 22615  ax-his2 22616  ax-his3 22617  ax-his4 22618
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-reu 2718  df-rmo 2719  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-1st 6378  df-2nd 6379  df-riota 6578  df-recs 6662  df-rdg 6697  df-er 6934  df-map 7049  df-en 7139  df-dom 7140  df-sdom 7141  df-sup 7475  df-pnf 9153  df-mnf 9154  df-xr 9155  df-ltxr 9156  df-le 9157  df-sub 9324  df-neg 9325  df-div 9709  df-nn 10032  df-2 10089  df-3 10090  df-4 10091  df-n0 10253  df-z 10314  df-uz 10520  df-rp 10644  df-seq 11355  df-exp 11414  df-cj 11935  df-re 11936  df-im 11937  df-sqr 12071  df-abs 12072  df-grpo 21810  df-gid 21811  df-ablo 21901  df-vc 22056  df-nv 22102  df-va 22105  df-ba 22106  df-sm 22107  df-0v 22108  df-nmcv 22110  df-hnorm 22502  df-hba 22503  df-hvsub 22505  df-hlim 22506  df-sh 22740  df-ch 22755  df-ch0 22786  df-nmop 23373  df-lnop 23375  df-unop 23377
  Copyright terms: Public domain W3C validator